Display options
Share it on

Nat Commun. 2021 Nov 18;12(1):6686. doi: 10.1038/s41467-021-26963-9.

A standardized gnotobiotic mouse model harboring a minimal 15-member mouse gut microbiota recapitulates SOPF/SPF phenotypes.

Nature communications

Marion Darnaud, Filipe De Vadder, Pascaline Bogeat, Lilia Boucinha, Anne-Laure Bulteau, Andrei Bunescu, Céline Couturier, Ana Delgado, Hélène Dugua, Céline Elie, Alban Mathieu, Tereza Novotná, Djomangan Adama Ouattara, Séverine Planel, Adrien Saliou, Dagmar Šrůtková, Jennifer Yansouni, Bärbel Stecher, Martin Schwarzer, François Leulier, Andrea Tamellini

Affiliations

  1. BIOASTER, Institut de Recherche Technologique, 40 avenue Tony Garnier, 69007, Lyon, France. [email protected].
  2. Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, 46 Allée d'Italie, 69364, Lyon, Cedex, 07, France.
  3. BIOASTER, Institut de Recherche Technologique, 40 avenue Tony Garnier, 69007, Lyon, France.
  4. Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, 54922, Nový Hrádek, Czech Republic.
  5. Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Ludwig-Maximilians-University of Munich, 80336, Munich, Germany.
  6. German Center for Infection Research (DZIF), Partner Site, Munich, Germany.

PMID: 34795236 PMCID: PMC8602333 DOI: 10.1038/s41467-021-26963-9

Abstract

Mus musculus is the classic mammalian model for biomedical research. Despite global efforts to standardize breeding and experimental procedures, the undefined composition and interindividual diversity of the microbiota of laboratory mice remains a limitation. In an attempt to standardize the gut microbiome in preclinical mouse studies, here we report the development of a simplified mouse microbiota composed of 15 strains from 7 of the 20 most prevalent bacterial families representative of the fecal microbiota of C57BL/6J Specific (and Opportunistic) Pathogen-Free (SPF/SOPF) animals and the derivation of a standardized gnotobiotic mouse model called GM15. GM15 recapitulates extensively the functionalities found in the C57BL/6J SOPF microbiota metagenome, and GM15 animals are phenotypically similar to SOPF or SPF animals in two different facilities. They are also less sensitive to the deleterious effects of post-weaning malnutrition. In this work, we show that the GM15 model provides increased reproducibility and robustness of preclinical studies by limiting the confounding effect of fluctuation in microbiota composition, and offers opportunities for research focused on how the microbiota shapes host physiology in health and disease.

© 2021. The Author(s).

References

  1. Cell Host Microbe. 2013 Nov 13;14(5):559-70 - PubMed
  2. Anaerobe. 2010 Jun;16(3):311-3 - PubMed
  3. Science. 2012 Jun 8;336(6086):1262-7 - PubMed
  4. Nucleic Acids Res. 2015 Jul 1;43(W1):W30-8 - PubMed
  5. Int J Med Microbiol. 2016 Aug;306(5):316-327 - PubMed
  6. Int J Syst Evol Microbiol. 2012 Mar;62(Pt 3):716-721 - PubMed
  7. Yale J Biol Med. 2016 Sep 30;89(3):363-373 - PubMed
  8. Nat Biotechnol. 2015 Oct;33(10):1103-8 - PubMed
  9. Gut. 1971 Mar;12(3):230-5 - PubMed
  10. Sci Adv. 2019 May 22;5(5):eaaw1507 - PubMed
  11. Clin Exp Allergy. 2009 Dec;39(12):1842-51 - PubMed
  12. Allergol Int. 2017 Oct;66(4):515-522 - PubMed
  13. Adv Nutr. 2019 Jan 1;10(suppl_1):S49-S66 - PubMed
  14. J Clin Endocrinol Metab. 2007 Dec;92(12):4529-35 - PubMed
  15. Environ Microbiol. 2018 Jan;20(1):324-336 - PubMed
  16. Int J Inflam. 2010 Oct 03;2010:321426 - PubMed
  17. Microbiol Spectr. 2013 Dec;1(2): - PubMed
  18. Nature. 2016 May 04;533(7604):543-546 - PubMed
  19. Dis Model Mech. 2015 Jan;8(1):1-16 - PubMed
  20. J Proteome Res. 2012 Feb 3;11(2):620-30 - PubMed
  21. Nature. 2008 Nov 27;456(7221):507-10 - PubMed
  22. J Lipid Res. 1975 May;16(3):165-79 - PubMed
  23. Mol Syst Biol. 2008;4:219 - PubMed
  24. Curr Opin Microbiol. 2018 Aug;44:50-60 - PubMed
  25. Nat Microbiol. 2016 Aug 08;1(10):16131 - PubMed
  26. Appl Environ Microbiol. 2007 Aug;73(16):5261-7 - PubMed
  27. Genome Res. 2016 Dec;26(12):1721-1729 - PubMed
  28. Cell Metab. 2017 Mar 7;25(3):522-534 - PubMed
  29. Infect Immun. 2012 Dec;80(12):4398-408 - PubMed
  30. Science. 2016 Feb 19;351(6275):854-7 - PubMed
  31. Bioinformatics. 2011 Oct 1;27(19):2756-7 - PubMed
  32. Proc Natl Acad Sci U S A. 2016 Nov 22;113(47):E7554-E7563 - PubMed
  33. Endocrinology. 2007 Apr;148(4):1489-97 - PubMed
  34. Proc R Soc Med. 1962 Apr;55:253-6 - PubMed
  35. Curr Protoc Immunol. 2017 Apr 3;117:23.1.1-23.1.13 - PubMed
  36. Nat Microbiol. 2016 Nov 21;2:16215 - PubMed
  37. Mol Metab. 2016 May 27;5(9):743-52 - PubMed
  38. BMC Bioinformatics. 2017 Mar 14;18(Suppl 3):80 - PubMed
  39. Int J Neuropsychopharmacol. 2016 Aug 12;19(8): - PubMed
  40. Lab Anim (NY). 2017 Mar 22;46(4):114-122 - PubMed
  41. Front Physiol. 2018 Oct 31;9:1534 - PubMed
  42. Nature. 2016 Jun 08;534(7606):191-9 - PubMed
  43. Lab Anim. 2014 Feb 4;48(3):178-192 - PubMed
  44. ILAR J. 2015;56(2):169-78 - PubMed
  45. Nucleic Acids Res. 2016 Jan 4;44(D1):D457-62 - PubMed
  46. Cell. 2012 Jun 22;149(7):1578-93 - PubMed
  47. Mucosal Immunol. 2015 May;8(3):476-86 - PubMed
  48. Cell Metab. 2015 Sep 1;22(3):516-530 - PubMed
  49. Immunity. 2017 Aug 15;47(2):339-348.e4 - PubMed
  50. Science. 2019 Jul 12;365(6449): - PubMed
  51. J Biol Chem. 2013 Jul 19;288(29):21295-21306 - PubMed
  52. Immunol Rev. 2017 Sep;279(1):8-22 - PubMed
  53. J Bacteriol. 1978 Apr;134(1):84-91 - PubMed
  54. Science. 2016 Jun 24;352(6293):1533 - PubMed
  55. Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11070-5 - PubMed
  56. Anal Biochem. 2008 Jun 1;377(1):16-23 - PubMed
  57. Curr Protoc Bioinformatics. 2003 Feb;Chapter 10:Unit 10.3 - PubMed
  58. Cell Host Microbe. 2021 Apr 14;29(4):650-663.e9 - PubMed
  59. Front Microbiol. 2020 Jan 10;10:2999 - PubMed
  60. Physiol Rev. 2015 Apr;95(2):603-44 - PubMed
  61. Braz J Microbiol. 2010 Oct;41(4):862-75 - PubMed
  62. Annu Rev Genomics Hum Genet. 2017 Aug 31;18:65-86 - PubMed
  63. J Exp Med. 1965 Jul 1;122:77-82 - PubMed
  64. Anal Chem. 2014 Jun 3;86(11):5433-40 - PubMed
  65. BMC Bioinformatics. 2010 Mar 08;11:119 - PubMed
  66. Gut Microbes. 2013 Sep-Oct;4(5):361-70 - PubMed
  67. Cell. 2016 May 5;165(4):827-41 - PubMed
  68. Mol Syst Biol. 2015 Oct 16;11(10):834 - PubMed
  69. Genome Announc. 2017 Oct 19;5(42): - PubMed
  70. Genome Announc. 2016 Sep 15;4(5): - PubMed
  71. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45 - PubMed
  72. Cell Metab. 2016 Jul 12;24(1):9-10 - PubMed
  73. Genome Biol. 2017 Apr 13;18(1):70 - PubMed
  74. FEMS Microbiol Rev. 2016 Jan;40(1):117-32 - PubMed
  75. Genome Announc. 2014 Apr 10;2(2): - PubMed
  76. J Mol Biol. 1990 Oct 5;215(3):403-10 - PubMed
  77. Nat Commun. 2018 Jan 4;9(1):68 - PubMed
  78. Microbiol Resour Announc. 2020 Aug 27;9(35): - PubMed
  79. Bioinformatics. 2018 Jul 15;34(14):2371-2375 - PubMed
  80. J Proteome Res. 2014 Dec 5;13(12):5281-92 - PubMed
  81. Bioinformatics. 2015 Feb 15;31(4):587-9 - PubMed
  82. N Engl J Med. 2016 Dec 15;375(24):2369-2379 - PubMed

Publication Types