Display options
Share it on

Bull Exp Biol Med. 2021 Dec;172(2):236-244. doi: 10.1007/s10517-021-05369-z. Epub 2021 Dec 02.

Experimental Study of the Efficacy of Sodium Deoxyribonucleate Used in Combination with Co-Transplantation of Mesenchymal and Hematopoietic Stem Cells after Exposure to γ-Radiation.

Bulletin of experimental biology and medicine

L N Pavlova, L P Zhavoronkov, V V Pavlov, V V Panfilova, O S Izmest'eva, O F Chibisova, V L Ivanov, P V Shegai, A D Kaprin

Affiliations

  1. A. F. Tsyb Medical Radiological Research Center, Affiliated Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Obninsk, Russia. [email protected].
  2. A. F. Tsyb Medical Radiological Research Center, Affiliated Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Obninsk, Russia.
  3. Clinical Hospital No. 8, Federal Medical-Biological Agency of Russia, Obninsk, Russia.
  4. National Medical Research Centre of Radiology, Ministry of Health of the Russian Federation, Obninsk, Russia.
  5. Peoples' Friendship University of Russia, Moscow, Russia.

PMID: 34855080 DOI: 10.1007/s10517-021-05369-z

Abstract

We studied the possibility of using sodium deoxyribonucleate (Derinat) for improving the efficiency of co-transplantation of mesenchymal (MSC) and hematopoietic stem cells (HSC) to female F1(CBA×C57BL/6) mice with bone marrow aplasia caused by exposure to γ-radiation. It was found that immunomodulator Derinat enhanced the effect of co-transplantation, in particular, triple post-irradiation administration of Derinat accelerated hematopoiesis recovery judging from the parameters of peripheral blood, total cellularity of the bone marrow and spleen, and animal survival. Single or double administration of Derinat prior to irradiation was ineffective. The optimal result was obtained when the following scheme was applied: MSC→HSC with an interval of 48 h starting during the first hours after irradiation and triple administration of Derinat (in 10-15 min, 3 and 7 days after irradiation) in a dose of 3 mg/mouse.

© 2021. Springer Science+Business Media, LLC, part of Springer Nature.

Keywords: co-transplantation; hemopoiesis; linear mice; sodium deoxyribonucleate; stem cells

References

  1. Balykova AA, Kashaeva OV. Clinical efficacy of Derinat in the treatment of internal diseases. Terra Medica Nova. 2007;(3):29-33. Russian. - PubMed
  2. Dobrykh VA, Makarevich АМ, Aliev AM, Romanjucha RV, Uvarova IV, Mamrovskaya TP, Djachenko OA, Ten TK, Guseva OE, Morozova NV, Kovaleva EG, Morozov MA, Bendikov EV, Chepel TV, Plachotnij AP, Bondarenko OA, Chelimskaja IV. Bilateral community-acquired pneumonia (comparative clinical epidemiological and topic characteristics). Dal’nevost. Med. Zh. 2018;(4):17-21. Russian. - PubMed
  3. Dugina VV, Sokolova NN, Kuzin VB, Rudakova GV, Lebedeva NV, Palamarchuk SI. The influence of licopid and Derinat on the activity of lysozyme as of a factor of nonspecific immune defence at chronic ulcer of stomach and duodenum. Med. Al’manakh. 2010;(3):201-203. Russian. - PubMed
  4. Zuikova AA, Krasnorutskaya ON, Kotova YuA, Strakhova NV, Bugrimov DYu. The effectiveness of the inclusion of sodium deoxyribonucleate in complex treatment of patients with community-acquired pneumonia. Lech. Vrach. 2020;(6):80-84. doi: https://doi.org/10.26295/OS.2020.18.12.016 . Russian. - PubMed
  5. Kolesnikova AI. Cultures of hematopoietic cells in hematology. Ter. Arkhiv. 1983;(8):122-130. Russian. - PubMed
  6. Likhacheva AS, Rogachev VA, Nikolin VP, Popova NA, Shilov AG, Sebeleva TE, Strunkin DN, Chernykh ER, Gel’fgat EL, Bogachev SV, Shurdov MA. The idea of a “recombinogenic situation”. Inform. Vestn. VOGiS. 2008;12(3):426-473. Russian. - PubMed
  7. Masycheva VI, Danilenko ED, Shimina GG, Gvozdeva TS, Alyamkina EA, Dolgova EV, Proskurina AS, Orishchenko KE, Rogachev VA, Bogachev SS, Sidorov SV, Shurdov MA. Study of hemostimulation activity of the nucleoprotein complex derived from human placenta. Vestn. Novosib. Gos. Univer. Ser. Biol., Klin. Med. 2012;10(4):35-40. Russian. - PubMed
  8. Mashkovskii MD. Drugs. Moscow, 2011. Russian. - PubMed
  9. Pavlova LN, Zhavoronkov LP, Pavlov VV, Chibisova OF, Ivanov VL, Panfilova VV. Combined transplantation of mesenchymal and hematopoietic stem cells for hematopoiesis restitution in mice exposed to ionizing radiation. Evraz. Nauch. Ob’edinenie. 2018;(3-2):102-105. Russian. - PubMed
  10. Sevankaeva LE, Yuzhakov VV, Konoplyannikov AG, Romanko YuS, Bandurko LN, Fomina NK, Ingel IE, Konoplyannikov MA, Yakovleva ND, Tsyganova MG. Radiosensitising effect of mesenchymal stem cells on sarcoma m-1 under local gamma-irradiation. Radiats. Risk. 2017;26(3):100-115. doi: https://doi.org/10.21870/0131-3878-2017-26-3-100-115 - PubMed
  11. Filatov OJ, Kashaev OV, Bugrimov DY, Klimovitch AA. Morphophysiological principles of immunological effect of eukaryotic DNA. Ross. Immunol. Zh. 2013;7(4):385-390. Russian. - PubMed
  12. Fedyanina LN, Besednova NN, Epshtein LM, Kalenik TK. The immunotropic effect of biologically active additive – salmon soft roe DNA in experiment. Acta Biomedica Scientifica. 2006;(5):238-241. - PubMed
  13. An N, Cen B, Cai H, Song JH, Kraft A, Kang Y. Pim1 kinase regulates c-Kit gene translation. Exp. Hematol. Oncol. 2016;5:31. doi: https://doi.org/10.1186/s40164-016-0060-3 - PubMed
  14. Angelopoulou M, Novelli E, Grove JE, Rinder HM, Civin C, Cheng L, Krause DS. Cotransplantation of human mesenchymal stem cells enhances human myelopoiesis and megakaryocytopoiesis in NOD/SCID mice. Exp. Hematol. 2003;31(5):413-420. doi: https://doi.org/10.1016/s0301-472x(03)00042-0 - PubMed
  15. Chapel A, Bertho JM, Bensidhoum M, Fouillard L, Young RG, Frick J, Demarquay C, Cuvelier F, Mathieu E, Trompier F, Dudoignon N, Germain C, Mazurier C, Aigueperse J, Borneman J, Gorin N. C, Gourmelon P, Thierry D. Mesenchymal stem cells home to injured tissues when coinfused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome. J. Gene Med. 2003;5(12):1028-1038. doi: https://doi.org/10.1002/jgm.452 - PubMed
  16. Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F. Muscle regeneration by bone marrow-derived myogenic progenitors. Science. 1998;279:1528-1530. doi: https://doi.org/10.1126/science.279.5356.1528 - PubMed
  17. Koç ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI, Lazarus HM. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J. Clin. Oncol. 2000;18(2):307-316. doi: https://doi.org/10.1200/JCO.2000.18.2.307 - PubMed
  18. Lazarus HM, Koc ON, Devine SM, Curtin P, Maziarz RT, Holland HK, Shpall EJ, McCarthy P, Atkinson K, Cooper BW, Gerson SL, Laughlin MJ, Loberiza FR Jr, Moseley AB, Bacigalupo A. Cotransplantation of HLA-identical sibling cultureexpanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol. Blood Marrow Transplant. 2005;11(5):389-398. doi: https://doi.org/10.1016/j.bbmt.2005.02.001 - PubMed
  19. Le Blanc K, Samuelsson H, Gustafsson B, Remberger M, Sundberg B, Arvidson J, Ljungman P, Lönnies H, Nava S, Ringdén O. Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells. Leukemia. 2007;21(8):1733-1738. doi: https://doi.org/10.1038/sj.leu.2404777 - PubMed
  20. Likhacheva AS, Nikolin VP, Popova NA, Rogachev VA, Prokhorovich MA, Sebeleva TE, Bogachev SS, Shurdov MA. Exogenous DNA can be captured by stem cells and be involved in their rescue from death after lethal-dose gammaradiation. Gene Ther. Mol. Biol. 2007;11(2):305-314. - PubMed
  21. Pavlov VV, Pavlova LN, Chibisova OF, Ivanov VL, Selivanova EI, Konoplyannikov AG, Zhavoronkov LP. Effect of different regimens of co-transplantation of hemopoietic and mesenchymal hemopoietic stem cells on the rates of hemopoietic recovery in laboratory mice treated with cyclophosphamide in sublethal doses. Bull. Exp. Biol. Med. 2019;166(4):553-557. doi: https://doi.org/10.1007/s10517-019-04391-6 - PubMed
  22. Reya T. Regulation of hematopoietic stem sell self-reneval. Recent Prog. Horm. Res. 2003;58:283-295. doi: https://doi.org/10.1210/rp.58.1.283 - PubMed
  23. Tsyb AF, Yuzhakov VV, Roshal’ LM, Sukhikh GT, Konoplyannikov AG, Sushkevich GN, Yakovleva ND, Ingel’ IE, Bandurko LN, Sevan’kaeva LE, Mikhina LN, Fomina NK, Marei MV, Semenova ZhB, Konoplyannikova OA, Kal’sina SSh, Lepekhina LA, Semenkova IV, Agaeva EV, Shevchuk AS, Pavlova LN, Tokarev OY, Karaseva OV, Chernyshova TA. Morphofunctional study of the therapeutic efficacy of human mesenchimal and neural stem cells in rats with diffuse brain injury. Bull. Exp. Biol. Med. 2009;147(1):132-146. doi: https://doi.org/10.1007/s10517-009-0432-3 - PubMed
  24. Wright DE, Bowman EP, Wagers AJ, Butcher EC, Weissman IL. Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J. Exp. Med. 2002;195(9):1145-1154. doi: https://doi.org/10.1084/jem.20011284 - PubMed
  25. Yakubov LA, Popova NA, Nikolin VP, Semenov DV, Bogachev SS, Oskina IN. Extracellular genomic DNA protects mice against radiation and chemical mutagens. Genome Biol. 2003;5. doi: https://doi.org/10.1186/gb-2003-5-2-p3 - PubMed

Publication Types