Display options
Share it on

PLoS One. 2021 Dec 02;16(12):e0260757. doi: 10.1371/journal.pone.0260757. eCollection 2021.

In vitro co-metabolism of epigallocatechin-3-gallate (EGCG) by the mucin-degrading bacterium Akkermansia muciniphila.

PloS one

Yun Xia, Xuxiang Zhang, Mingxin Jiang, Hongbo Zhang, Yinfeng Wang, Yuyu Zhang, Robert Seviour, Yunhong Kong

Affiliations

  1. School of Agriculture and Life Science, Kunming University, Kunming, China.
  2. First Affiliated Hospital of Kunming Medical University, Kunming, China.
  3. Microbiology Department, La Trobe University, Bundoora, Victoria, Australia.
  4. Dianchi Lake Environmental Protection Collaborative Research Center, Kunming University, Kunming, China.

PMID: 34855864 PMCID: PMC8638859 DOI: 10.1371/journal.pone.0260757

Abstract

Akkermansia muciniphila is a Gram-negative bacterium that resides within the gut mucus layer, and plays an important role in promoting gut barrier integrity, modulating the immune response and inhibiting gut inflammation. Growth stimulation of A. muciniphila by polyphenols including epigallocatechin-3-gallate (EGCG) from difference sources is well-documented. However, no published in vitro culture data on utilization of polyphenols by A. muciniphila are available, and the mechanism of growth-stimulating prebiotic effect of polyphenols on it remains unclear. Here in vitro culture studies have been carried out on the metabolism of EGCG by A. muciniphila in the presence of either mucin or glucose. We found that A. muciniphila did not metabolize EGCG alone but could co-metabolize it together with both these substrates in the presence of mineral salts and amino acids for mucin and protein sources for glucose. Our metabolomic data show that A. muciniphila converts EGCG to gallic acid, epigallocatechin, and (-)-epicatechin through ester hydrolysis. The (-)-epicatechin formed is then further converted to hydroxyhydroquinone. Co-metabolism of A. muciniphila of EGCG together with either mucin or glucose promoted substantially its growth, which serves as a further demonstration of the growth-promoting effect of polyphenols on A. muciniphila and provides an important addition to the currently available proposed mechanisms of polyphenolic prebiotic effects on A. muciniphila.

Conflict of interest statement

The authors have declared that no competing interests exist.

References

  1. Nat Med. 2017 Jan;23(1):107-113 - PubMed
  2. Database (Oxford). 2013 Oct 07;2013:bat070 - PubMed
  3. Mol Nutr Food Res. 2017 Dec;61(12): - PubMed
  4. Gut. 2015 Jun;64(6):872-83 - PubMed
  5. Eur Urol. 2020 Aug;78(2):195-206 - PubMed
  6. Chem Res Toxicol. 2000 Mar;13(3):177-84 - PubMed
  7. Microb Pathog. 2017 May;106:171-181 - PubMed
  8. Compr Rev Food Sci Food Saf. 2020 Jul;19(4):1268-1298 - PubMed
  9. Int J Syst Evol Microbiol. 2004 Sep;54(Pt 5):1469-1476 - PubMed
  10. Proc Natl Acad Sci U S A. 2013 May 28;110(22):9066-71 - PubMed
  11. Crit Rev Food Sci Nutr. 2020;60(8):1243-1264 - PubMed
  12. BJS Open. 2021 Sep 6;5(5): - PubMed
  13. FASEB J. 2018 Jun 8;:fj201800370R - PubMed
  14. Am J Clin Nutr. 2004 May;79(5):727-47 - PubMed
  15. Front Microbiol. 2017 Sep 22;8:1765 - PubMed
  16. Int J Biol Macromol. 2020 Apr 15;149:331-340 - PubMed
  17. Appl Environ Microbiol. 2007 Dec;73(23):7767-70 - PubMed
  18. Curr Nutr Rep. 2019 Dec;8(4):307-316 - PubMed
  19. Gastroenterology. 1981 Oct;81(4):759-65 - PubMed
  20. J Agric Food Chem. 2019 Jan 30;67(4):1029-1043 - PubMed
  21. Appl Environ Microbiol. 2020 Jan 21;86(3): - PubMed
  22. Open Forum Infect Dis. 2020 Sep 11;7(9):ofaa338 - PubMed
  23. Eur Rev Med Pharmacol Sci. 2019 Sep;23(18):8075-8083 - PubMed
  24. Appl Environ Microbiol. 1993 Apr;59(4):1114-9 - PubMed
  25. J Clin Microbiol. 1997 Mar;35(3):558-62 - PubMed
  26. Sci Rep. 2019 Oct 30;9(1):15683 - PubMed
  27. Molecules. 2018 Aug 30;23(9): - PubMed
  28. Diabetes. 2015 Aug;64(8):2847-58 - PubMed
  29. PLoS One. 2011 Mar 03;6(3):e16876 - PubMed
  30. Nutr Bull. 2017 Dec;42(4):356-360 - PubMed
  31. mBio. 2021 May 18;12(3): - PubMed
  32. J Nutr Biochem. 2020 Oct;84:108455 - PubMed
  33. Appl Microbiol Biotechnol. 2019 Feb;103(4):1823-1835 - PubMed
  34. Science. 2018 Jan 5;359(6371):91-97 - PubMed
  35. Aging (Albany NY). 2021 Mar 2;13(5):6375-6405 - PubMed
  36. BMC Genomics. 2017 Oct 18;18(1):800 - PubMed
  37. Curr Obes Rep. 2015 Dec;4(4):389-400 - PubMed
  38. Br J Nutr. 2008 Apr;99(4):782-92 - PubMed
  39. Appl Environ Microbiol. 2010 Oct;76(20):6933-8 - PubMed
  40. PLoS One. 2013 Aug 06;8(8):e70803 - PubMed
  41. Nature. 2015 Mar 5;519(7541):92-6 - PubMed
  42. Front Immunol. 2020 Apr 09;11:645 - PubMed
  43. Int J Biol Macromol. 2020 Sep 15;159:373-382 - PubMed
  44. Nutrients. 2010 Dec;2(12):1266-89 - PubMed
  45. Gut Microbes. 2016;7(2):146-53 - PubMed
  46. J Clin Biochem Nutr. 2019 Jul;65(1):34-46 - PubMed
  47. Appl Environ Microbiol. 2008 Mar;74(5):1646-8 - PubMed
  48. Nucleic Acids Res. 2020 Jan 8;48(D1):D440-D444 - PubMed

Publication Types