Display options
Share it on

Sci Rep. 2021 Dec 02;11(1):23315. doi: 10.1038/s41598-021-02432-7.

Multiscale interactome analysis coupled with off-target drug predictions reveals drug repurposing candidates for human coronavirus disease.

Scientific reports

Michael G Sugiyama, Haotian Cui, Dar'ya S Redka, Mehran Karimzadeh, Edurne Rujas, Hassaan Maan, Sikander Hayat, Kyle Cheung, Rahul Misra, Joseph B McPhee, Russell D Viirre, Andrew Haller, Roberto J Botelho, Raffi Karshafian, Sarah A Sabatinos, Gregory D Fairn, Seyed Ali Madani Tonekaboni, Andreas Windemuth, Jean-Philippe Julien, Vijay Shahani, Stephen S MacKinnon, Bo Wang, Costin N Antonescu

Affiliations

  1. Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada.
  2. Department of Computer Science, University of Toronto, Toronto, ON, Canada.
  3. Vector Institute, Toronto, ON, Canada.
  4. Cyclica Inc., Toronto, ON, Canada.
  5. Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada.
  6. Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
  7. Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain.
  8. Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
  9. Peter Munk Cardiac Centre, University Health Centre, Toronto, ON, Canada.
  10. Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA, USA.
  11. Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany.
  12. Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada.
  13. Phoenox Pharma, Toronto, ON, Canada.
  14. Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
  15. Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.
  16. Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, Toronto, ON, Canada.
  17. Department of Physics, Ryerson University, Toronto, ON, Canada.
  18. Department of Surgery, University of Toronto, Toronto, ON, Canada.
  19. Department of Immunology, Toronto, ON, Canada.
  20. Cyclica Inc., Toronto, ON, Canada. [email protected].
  21. Department of Computer Science, University of Toronto, Toronto, ON, Canada. [email protected].
  22. Vector Institute, Toronto, ON, Canada. [email protected].
  23. Peter Munk Cardiac Centre, University Health Centre, Toronto, ON, Canada. [email protected].
  24. Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada. [email protected].
  25. Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada. [email protected].
  26. Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada. [email protected].
  27. Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada. [email protected].

PMID: 34857794 PMCID: PMC8640055 DOI: 10.1038/s41598-021-02432-7

Abstract

The COVID-19 pandemic has highlighted the urgent need for the identification of new antiviral drug therapies for a variety of diseases. COVID-19 is caused by infection with the human coronavirus SARS-CoV-2, while other related human coronaviruses cause diseases ranging from severe respiratory infections to the common cold. We developed a computational approach to identify new antiviral drug targets and repurpose clinically-relevant drug compounds for the treatment of a range of human coronavirus diseases. Our approach is based on graph convolutional networks (GCN) and involves multiscale host-virus interactome analysis coupled to off-target drug predictions. Cell-based experimental assessment reveals several clinically-relevant drug repurposing candidates predicted by the in silico analyses to have antiviral activity against human coronavirus infection. In particular, we identify the MET inhibitor capmatinib as having potent and broad antiviral activity against several coronaviruses in a MET-independent manner, as well as novel roles for host cell proteins such as IRAK1/4 in supporting human coronavirus infection, which can inform further drug discovery studies.

© 2021. The Author(s).

References

  1. Science. 2008 Aug 1;321(5889):691-6 - PubMed
  2. Nat Med. 2017 Apr 7;23(4):405-408 - PubMed
  3. Science. 2015 Feb 20;347(6224):1257601 - PubMed
  4. J Virol. 2007 Jan;81(1):20-9 - PubMed
  5. Mol Immunol. 2009 Apr;46(7):1458-66 - PubMed
  6. Cell. 2020 Dec 10;183(6):1520-1535.e14 - PubMed
  7. Nucleic Acids Res. 2016 Jan 4;44(D1):D380-4 - PubMed
  8. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D449-51 - PubMed
  9. Nat Commun. 2021 Mar 19;12(1):1796 - PubMed
  10. Antimicrob Agents Chemother. 2020 Jun 23;64(7): - PubMed
  11. J Immunol. 2014 Sep 15;193(6):2984-93 - PubMed
  12. Science. 2020 Nov 13;370(6518):856-860 - PubMed
  13. PLoS Pathog. 2008 Dec;4(12):e1000240 - PubMed
  14. Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):19970-4 - PubMed
  15. Cell. 2014 Nov 20;159(5):1212-1226 - PubMed
  16. Bioinformatics. 2020 Feb 15;36(4):1241-1251 - PubMed
  17. J Med Virol. 2021 Feb;93(2):1002-1007 - PubMed
  18. Transl Clin Pharmacol. 2019 Jun;27(2):59-63 - PubMed
  19. Clin Transl Sci. 2021 May;14(3):1123-1132 - PubMed
  20. J Virol. 2007 Aug;81(16):8722-9 - PubMed
  21. Comput Struct Biotechnol J. 2021;19:2537-2548 - PubMed
  22. Nature. 2007 Aug 9;448(7154):645-6 - PubMed
  23. Cell. 2021 Jan 7;184(1):106-119.e14 - PubMed
  24. J Vis Exp. 2014 Nov 04;(93):e52065 - PubMed
  25. Science. 2020 Nov 13;370(6518):861-865 - PubMed
  26. PLoS Pathog. 2017 Mar 29;13(3):e1006286 - PubMed
  27. J Biol Chem. 2021 Jan-Jun;296:100306 - PubMed
  28. J Virol. 2018 Jan 17;92(3): - PubMed
  29. Med Drug Discov. 2020 Sep;7:100052 - PubMed
  30. Int J Mol Sci. 2016 Nov 23;17(11): - PubMed
  31. Science. 2020 Sep 11;369(6509):1395-1398 - PubMed
  32. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 - PubMed
  33. Nat Commun. 2020 Sep 11;11(1):4541 - PubMed
  34. Genomics. 2015 Aug;106(2):107-15 - PubMed
  35. Comput Struct Biotechnol J. 2020 Apr 13;18:1043-1055 - PubMed
  36. Respirology. 2018 Feb;23(2):130-137 - PubMed
  37. Nat Genet. 2000 May;25(1):25-9 - PubMed
  38. Nat Rev Drug Discov. 2017 Jan;16(1):19-34 - PubMed
  39. Intensive Care Med. 2020 Apr;46(4):586-590 - PubMed
  40. Sci Transl Med. 2019 Sep 11;11(509): - PubMed
  41. Curr Top Microbiol Immunol. 2005;287:57-94 - PubMed
  42. J Med Virol. 2021 Mar;93(3):1403-1408 - PubMed
  43. Nat Methods. 2011 Jun;8(6):478-80 - PubMed
  44. Cell. 2021 Jan 7;184(1):120-132.e14 - PubMed
  45. Clin Cancer Res. 2019 May 15;25(10):3164-3175 - PubMed
  46. N Engl J Med. 2021 May 13;384(19):1866-1868 - PubMed
  47. Mol Cancer Ther. 2016 Jul;15(7):1568-79 - PubMed
  48. Front Oncol. 2017 Nov 14;7:273 - PubMed
  49. J Exp Med. 2021 Apr 5;218(4): - PubMed
  50. Sci Data. 2021 Feb 26;8(1):70 - PubMed
  51. Proc Natl Acad Sci U S A. 2019 Feb 12;116(7):2681-2690 - PubMed
  52. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D668-72 - PubMed
  53. Lancet Infect Dis. 2020 May;20(5):533-534 - PubMed
  54. Nat Methods. 2009 Jan;6(1):83-90 - PubMed
  55. Cell Res. 2008 Feb;18(2):290-301 - PubMed
  56. Nucleic Acids Res. 2019 Jan 8;47(D1):D529-D541 - PubMed
  57. Int J Obes (Lond). 2021 May;45(5):1152-1154 - PubMed
  58. Nucleic Acids Res. 2001 May 1;29(9):e45 - PubMed
  59. Cold Spring Harb Mol Case Stud. 2020 Jun 12;6(3): - PubMed
  60. Nat Rev Microbiol. 2016 Aug;14(8):523-34 - PubMed
  61. KDD. 2016 Aug;2016:855-864 - PubMed
  62. Nucleic Acids Res. 2017 Jan 4;45(D1):D313-D319 - PubMed
  63. Medicine (Baltimore). 2010 Nov;89(6):403-425 - PubMed
  64. EMBO J. 2020 May 18;39(10):e105114 - PubMed
  65. J Hosp Infect. 2002 May;51(1):59-64 - PubMed
  66. Trends Immunol. 2002 Oct;23(10):503-6 - PubMed
  67. Clin Cancer Res. 2011 Nov 15;17(22):7127-38 - PubMed
  68. Nucleic Acids Res. 2019 Jan 8;47(D1):D330-D338 - PubMed
  69. Nat Commun. 2017 Nov 23;8(1):1735 - PubMed
  70. J Clin Med. 2020 Jun 19;9(6): - PubMed
  71. Drug Saf. 2019 Feb;42(2):211-233 - PubMed
  72. Nature. 2005 Oct 20;437(7062):1173-8 - PubMed
  73. Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):13507-13512 - PubMed
  74. Front Pharmacol. 2021 Jun 14;12:685308 - PubMed
  75. Cell. 2020 Apr 16;181(2):271-280.e8 - PubMed
  76. Virol J. 2008 Nov 12;5:138 - PubMed
  77. Nat Methods. 2012 Jul;9(7):671-5 - PubMed
  78. J Biomol Struct Dyn. 2020 Dec 27;:1-14 - PubMed
  79. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082 - PubMed
  80. Front Pediatr. 2017 Apr 28;5:83 - PubMed
  81. Nat Commun. 2021 Jun 16;12(1):3661 - PubMed
  82. Nature. 2020 Jul;583(7816):459-468 - PubMed
  83. Nat Med. 2020 Oct;26(10):1636-1643 - PubMed
  84. J Chem Inf Model. 2020 Dec 28;60(12):5727-5729 - PubMed
  85. Lancet. 2021 Mar 13;397(10278):952-954 - PubMed
  86. J Leukoc Biol. 2016 Nov;100(5):927-941 - PubMed
  87. J Leukoc Biol. 2019 Feb;105(2):339-351 - PubMed
  88. Nature. 1992 Jun 4;357(6377):420-2 - PubMed
  89. Science. 2020 Dec 4;370(6521): - PubMed

Publication Types