Display options
Share it on

Int J Mol Sci. 2021 Nov 06;22(21). doi: 10.3390/ijms222112033.

Leaf Apoplast of Field-Grown Potato Analyzed by Quantitative Proteomics and Activity-Based Protein Profiling.

International journal of molecular sciences

Kibrom B Abreha, Erik Alexandersson, Svante Resjö, Åsa Lankinen, Daniela Sueldo, Farnusch Kaschani, Markus Kaiser, Renier A L van der Hoorn, Fredrik Levander, Erik Andreasson

Affiliations

  1. Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-234 22 Lomma, Sweden.
  2. Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
  3. Chemische Biologie, Zentrum für Medizinische Biotechnologie, Fakultät für Biologie, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany.
  4. Department of Immunotechnology, Lund University, SE-221 00 Lund, Sweden.
  5. National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, SE-221 00 Lund, Sweden.

PMID: 34769464 PMCID: PMC8584485 DOI: 10.3390/ijms222112033

Abstract

Multiple biotic and abiotic stresses challenge plants growing in agricultural fields. Most molecular studies have aimed to understand plant responses to challenges under controlled conditions. However, studies on field-grown plants are scarce, limiting application of the findings in agricultural conditions. In this study, we investigated the composition of apoplastic proteomes of potato cultivar Bintje grown under field conditions, i.e., two field sites in June-August across two years and fungicide treated and untreated, using quantitative proteomics, as well as its activity using activity-based protein profiling (ABPP). Samples were clustered and some proteins showed significant intensity and activity differences, based on their field site and sampling time (June-August), indicating differential regulation of certain proteins in response to environmental or developmental factors. Peroxidases, class II chitinases, pectinesterases, and osmotins were among the proteins more abundant later in the growing season (July-August) as compared to early in the season (June). We did not detect significant differences between fungicide Shirlan treated and untreated field samples in two growing seasons. Using ABPP, we showed differential activity of serine hydrolases and β-glycosidases under greenhouse and field conditions and across a growing season. Furthermore, the activity of serine hydrolases and β-glycosidases, including proteins related to biotic stress tolerance, decreased as the season progressed. The generated proteomics data would facilitate further studies aiming at understanding mechanisms of molecular plant physiology in agricultural fields and help applying effective strategies to mitigate biotic and abiotic stresses.

Keywords: ABPP; apoplast; field-omics; potato; proteomics; serine hydrolases; β-glycosidases

References

  1. New Phytol. 2016 Dec;212(4):805-813 - PubMed
  2. J Biomed Biotechnol. 2010;2010:840518 - PubMed
  3. BMC Plant Biol. 2012 Jan 11;12:6 - PubMed
  4. New Phytol. 2014 Aug;203(3):913-25 - PubMed
  5. Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20832-7 - PubMed
  6. J Proteome Res. 2016 Feb 5;15(2):638-46 - PubMed
  7. J Proteome Res. 2015 Feb 6;14(2):1299-307 - PubMed
  8. Plant Commun. 2020 Jun 12;1(4):100085 - PubMed
  9. Front Plant Sci. 2014 Jun 03;5:249 - PubMed
  10. Plant Signal Behav. 2012 Mar;7(3):400-8 - PubMed
  11. Front Plant Sci. 2015 Aug 03;6:584 - PubMed
  12. Mol Cell Proteomics. 2011 Jan;10(1):R110.000133 - PubMed
  13. New Phytol. 2016 Dec;212(4):838-855 - PubMed
  14. PLoS One. 2015 May 26;10(5):e0128041 - PubMed
  15. Plant J. 2009 Apr;58(2):235-45 - PubMed
  16. J Proteome Res. 2009 Jun;8(6):3037-43 - PubMed
  17. Front Plant Sci. 2016 Jun 20;7:820 - PubMed
  18. Mol Cell Proteomics. 2009 May;8(5):1082-93 - PubMed
  19. Front Plant Sci. 2015 Sep 17;6:718 - PubMed
  20. J Proteome Res. 2016 Jul 1;15(7):2143-51 - PubMed
  21. Mol Cell Proteomics. 2013 May;12(5):1407-20 - PubMed
  22. Front Plant Sci. 2011 Nov 28;2:89 - PubMed
  23. Nat Methods. 2011 Sep 29;8(10):785-6 - PubMed
  24. Plant Mol Biol. 2012 Mar;78(4-5):503-14 - PubMed
  25. Nature. 2003 Mar 13;422(6928):193-7 - PubMed
  26. Plant J. 2004 Mar;37(6):914-39 - PubMed
  27. Funct Plant Biol. 2016 Aug;43(8):766-782 - PubMed
  28. J Proteome Res. 2011 Jul 1;10(7):2979-91 - PubMed
  29. Front Plant Sci. 2014 Jun 20;5:286 - PubMed
  30. Nat Biotechnol. 2008 Dec;26(12):1367-72 - PubMed
  31. J Proteome Res. 2011 Apr 1;10(4):1794-805 - PubMed
  32. J Proteome Res. 2014 Apr 4;13(4):1848-59 - PubMed
  33. Mol Cell Proteomics. 2005 Dec;4(12):2010-21 - PubMed
  34. Front Plant Sci. 2013 Feb 01;4:9 - PubMed
  35. BMC Plant Biol. 2014 Oct 01;14:254 - PubMed
  36. Mol Cell Proteomics. 2014 Oct;13(10):2787-800 - PubMed
  37. Nucleic Acids Res. 2014 Jan;42(Database issue):D1167-75 - PubMed
  38. Bioorg Med Chem. 2012 Jan 15;20(2):597-600 - PubMed
  39. J Proteome Res. 2015 May 1;14(5):1993-2001 - PubMed
  40. Mol Cell Proteomics. 2014 Sep;13(9):2513-26 - PubMed
  41. Nucleic Acids Res. 2016 Jan 4;44(D1):D279-85 - PubMed
  42. BMC Bioinformatics. 2006 Apr 05;7:191 - PubMed
  43. BMC Genomics. 2014 Jun 19;15:497 - PubMed
  44. BMC Genomics. 2014 Apr 28;15:315 - PubMed
  45. J Proteome Res. 2014 Jun 6;13(6):3114-20 - PubMed
  46. Agric Syst. 2017 Jul;155:240-254 - PubMed
  47. PLoS One. 2018 Nov 9;13(11):e0207253 - PubMed
  48. Nat Methods. 2016 Sep;13(9):731-40 - PubMed
  49. Genome Biol. 2013 Jun 07;14(6):r54 - PubMed
  50. Plant Methods. 2019 Nov 18;15:135 - PubMed
  51. Mol Cell Proteomics. 2012 Mar;11(3):O111.013698 - PubMed
  52. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W64-70 - PubMed
  53. J Proteomics. 2011 Jun 10;74(7):1045-67 - PubMed

Publication Types

Grant support