Display options
Share it on

J Fungi (Basel). 2021 Nov 16;7(11). doi: 10.3390/jof7110975.

Population Pharmacokinetic Analysis and Dosing Optimization of Prophylactic Fluconazole in Japanese Patients with Hematological Malignancy.

Journal of fungi (Basel, Switzerland)

Yasutaka Sakamoto, Hikaru Isono, Yuki Enoki, Kazuaki Taguchi, Takuya Miyazaki, Hiroyoshi Kunimoto, Hirofumi Koike, Maki Hagihara, Kenji Matsumoto, Hideaki Nakajima, Yukiko Sahashi, Kazuaki Matsumoto

Affiliations

  1. Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan.
  2. Department of Pharmacy, Yokohama City University Hospital, Yokohama 236-0004, Japan.
  3. Department of Hematology and Clinical Immunology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan.

PMID: 34829262 PMCID: PMC8618010 DOI: 10.3390/jof7110975

Abstract

We conducted population pharmacokinetic (PPK) analysis and Monte Carlo simulations to determine the appropriate prophylactic dose of fluconazole to prevent invasive candidiasis in patients with hematological malignancies. Patients receiving chemotherapy or hematopoietic stem cell transplantation at Yokohama City University Hospital between November 2018 and March 2020 were included. Additionally, patients receiving oral fluconazole for prophylaxis were recruited. We set the free area under the curve/minimum inhibitory concentration (MIC) = 50 as the target and determined the largest MIC (breakpoint MIC) that could achieve more than 90% probability of target attainment. The blood fluconazole concentration of 54 patients (119 points) was used for PPK analysis. The optimal model was the one-compartment model with first-order administration and first-order elimination incorporating creatinine clearance (CLcr) as a covariate of clearance and body weight as a covariate of distribution volume. We conducted Monte Carlo simulation with fluconazole at 200 mg/day or 400 mg/day dosing schedules and patient body weight and CLcr ranging from 40 to 70 kg and 40-140 mL/min, respectively. The breakpoint MICs on the first dosing day and at steady state were 0.5-1.0 μg/mL and 1.0-2.0 μg/mL for 200 mg/day and 1.0-2.0 μg/mL and 2.0-4.0 μg/mL for 400 mg/day, respectively. The recommended dose was 400-700 mg/day for the loading dose and 200-400 mg/day for the maintenance dose. Our findings suggest that the optimal prophylactic dose of fluconazole in hematological malignancy patients depends on CLcr and body weight, and a sufficient loading and maintenance dose may be needed to completely prevent invasive candidiasis.

Keywords: Monte Carlo simulation; dosing optimization; fluconazole; hematological malignancy; pharmacokinetics/pharmacodynamics; population pharmacokinetic analysis; probability of target attainment; prophylaxis

References

  1. Intern Med J. 2014 Dec;44(12b):1283-97 - PubMed
  2. Ann Hematol. 2018 Feb;97(2):197-207 - PubMed
  3. Jpn J Antibiot. 1989 Jan;42(1):17-30 - PubMed
  4. Nutrition. 1989 Sep-Oct;5(5):303-11; discussion 312-3 - PubMed
  5. Antimicrob Agents Chemother. 2016 Oct 21;60(11):6550-6557 - PubMed
  6. J Clin Pharm Ther. 2012 Jun;37(3):356-63 - PubMed
  7. N Engl J Med. 2015 Oct 8;373(15):1445-56 - PubMed
  8. Am J Health Syst Pharm. 2020 May 19;77(11):835-864 - PubMed
  9. Br J Clin Pharmacol. 1996 Apr;41(4):291-8 - PubMed
  10. Clin Infect Dis. 2010 Apr 15;50(8):1091-100 - PubMed
  11. Am J Kidney Dis. 2009 Jun;53(6):982-92 - PubMed
  12. Med Mycol. 2021 Jan 4;59(1):50-57 - PubMed
  13. N Engl J Med. 1992 Mar 26;326(13):845-51 - PubMed
  14. Drug Resist Updat. 2010 Dec;13(6):180-95 - PubMed
  15. Clin Microbiol Infect. 2012 Dec;18 Suppl 7:53-67 - PubMed
  16. Int J Antimicrob Agents. 2012 Mar;39(3):187-92 - PubMed
  17. Blood. 2003 May 1;101(9):3365-72 - PubMed
  18. J Antimicrob Chemother. 2014 May;69(5):1162-76 - PubMed
  19. Clin Pharmacokinet. 2010;49(1):1-16 - PubMed
  20. Antimicrob Agents Chemother. 2013 Feb;57(2):1006-11 - PubMed
  21. Eur J Clin Pharmacol. 2018 Nov;74(11):1449-1459 - PubMed
  22. Mayo Clin Proc. 2011 Aug;86(8):805-17 - PubMed
  23. Rev Infect Dis. 1990 Mar-Apr;12 Suppl 3:S318-26 - PubMed
  24. Clin Infect Dis. 2016 May 15;62(10):e51-77 - PubMed
  25. Antimicrob Agents Chemother. 1998 May;42(5):1105-9 - PubMed
  26. Med Mycol J. 2016;57(4):E117-E163 - PubMed
  27. Antimicrob Agents Chemother. 2007 Oct;51(10):3599-604 - PubMed
  28. Antimicrob Agents Chemother. 2007 Jan;51(1):35-9 - PubMed
  29. J Antimicrob Chemother. 1999 Aug;44(2):235-42 - PubMed
  30. J Infect Chemother. 2020 Nov;26(11):1164-1176 - PubMed
  31. Antimicrob Agents Chemother. 1985 Nov;28(5):648-53 - PubMed
  32. J Fungi (Basel). 2021 Jul 23;7(8): - PubMed
  33. Bone Marrow Transplant. 2004 Jun;33(12):1173-9 - PubMed
  34. Clin Infect Dis. 2016 Feb 15;62(4):e1-50 - PubMed
  35. Nephron. 1976;16(1):31-41 - PubMed
  36. Semin Respir Crit Care Med. 2008 Apr;29(2):198-210 - PubMed
  37. Haematologica. 2015 Nov;100(11):e462-6 - PubMed
  38. Ther Drug Monit. 2000 Oct;22(5):635-6 - PubMed
  39. Biol Pharm Bull. 2019 Dec 1;42(12):2089-2094 - PubMed

Publication Types