Display options
Share it on

Front Pharmacol. 2021 Nov 04;12:780620. doi: 10.3389/fphar.2021.780620. eCollection 2021.

Mechanistic Computational Models of Epithelial Cell Transporters-the Adorned Heroes of Pharmacokinetics.

Frontiers in pharmacology

Jasia King, Stefan Giselbrecht, Roman Truckenmüller, Aurélie Carlier

Affiliations

  1. Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands.
  2. Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands.

PMID: 34803720 PMCID: PMC8599978 DOI: 10.3389/fphar.2021.780620

Abstract

Epithelial membrane transporter kinetics portray an irrefutable role in solute transport in and out of cells. Mechanistic models are used to investigate the transport of solutes at the organ, tissue, cell or membrane scale. Here, we review the recent advancements in using computational models to investigate epithelial transport kinetics on the cell membrane. Various methods have been employed to develop transport phenomena models of solute flux across the epithelial cell membrane. Interestingly, we noted that many models used lumped parameters, such as the Michaelis-Menten kinetics, to simplify the transporter-mediated reaction term. Unfortunately, this assumption neglects transporter numbers or the fact that transport across the membrane may be affected by external cues. In contrast, more recent mechanistic transporter kinetics models account for the transporter number. By creating models closer to reality researchers can investigate the downstream effects of physical or chemical disturbances on the system. Evidently, there is a need to increase the complexity of mechanistic models investigating the solute flux across a membrane to gain more knowledge of transporter-solute interactions by assigning individual parameter values to the transporter kinetics and capturing their dependence on each other. This change results in better pharmacokinetic predictions in larger scale platforms. More reliable and efficient model predictions can be made by creating mechanistic computational models coupled with dedicated

Copyright © 2021 King, Giselbrecht, Truckenmüller and Carlier.

Keywords: computational mechanistic models; epithelial membrane; lumped parameter; pharmacokinetics; transporter

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Trends Biochem Sci. 1993 Jan;18(1):13-20 - PubMed
  2. Bioelectron Med. 2018 Nov 7;4:14 - PubMed
  3. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D181-6 - PubMed
  4. Biochim Biophys Acta. 1999 Dec 6;1461(2):359-76 - PubMed
  5. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):4028-33 - PubMed
  6. Am J Physiol Renal Physiol. 2020 Sep 1;319(3):F487-F505 - PubMed
  7. Eur J Pharmacol. 2016 Nov 5;790:28-35 - PubMed
  8. Front Physiol. 2015 Nov 06;6:318 - PubMed
  9. Am J Physiol. 1986 May;250(5 Pt 2):F860-73 - PubMed
  10. Expert Opin Drug Metab Toxicol. 2021 May;17(5):515-542 - PubMed
  11. Cell Tissue Res. 2010 Feb;339(2):449-57 - PubMed
  12. AAPS J. 2017 Sep;19(5):1317-1331 - PubMed
  13. Pflugers Arch. 2004 Feb;447(5):465-8 - PubMed
  14. Mol Pharmacol. 2011 May;79(5):795-805 - PubMed
  15. J Am Soc Nephrol. 2017 Dec;28(12):3504-3517 - PubMed
  16. Mol Syst Biol. 2009;5:292 - PubMed
  17. Adv Drug Deliv Rev. 2006 Nov 30;58(12-13):1431-50 - PubMed
  18. Drug Metab Dispos. 2016 Dec;44(12):1920-1924 - PubMed
  19. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15665-70 - PubMed
  20. Nat Rev Drug Discov. 2010 Mar;9(3):215-36 - PubMed
  21. Pharmacol Res. 2020 Apr;154:104234 - PubMed
  22. Toxins (Basel). 2020 Jun 12;12(6): - PubMed
  23. Drug Metab Dispos. 2020 Feb;48(2):116-122 - PubMed
  24. Clin Cancer Res. 2001 Apr;7(4):935-41 - PubMed
  25. Drug Metab Dispos. 2019 Aug;47(8):802-808 - PubMed
  26. Sci Rep. 2016 May 31;6:26715 - PubMed
  27. Pharm Res. 2012 Feb;29(2):411-26 - PubMed
  28. Nat Methods. 2018 Mar;15(3):173-182 - PubMed
  29. Drug Discov Today. 2009 Dec;14(23-24):1130-5 - PubMed
  30. J Pharmacol Exp Ther. 2003 Feb;304(2):801-9 - PubMed
  31. AAPS J. 2013 Jan;15(1):53-69 - PubMed
  32. Interface Focus. 2020 Apr 6;10(2):20190041 - PubMed
  33. Mol Aspects Med. 2013 Apr-Jun;34(2-3):95-107 - PubMed
  34. PLoS Comput Biol. 2019 Feb 25;15(2):e1006108 - PubMed
  35. Drug Metab Dispos. 2009 Feb;37(2):391-9 - PubMed
  36. Pflugers Arch. 2008 Oct;457(1):1-15 - PubMed
  37. J Natl Cancer Inst. 2000 Aug 16;92(16):1295-302 - PubMed
  38. Eur J Pharmacol. 2016 Nov 5;790:46-56 - PubMed
  39. Biochim Biophys Acta. 1976 Nov 11;455(1):152-62 - PubMed
  40. BMC Genomics. 2004 May 23;5(1):32 - PubMed
  41. Nat Protoc. 2007;2(3):547-76 - PubMed
  42. Front Physiol. 2019 Apr 12;10:380 - PubMed
  43. Sci Rep. 2020 May 15;10(1):8040 - PubMed
  44. Biopharm Drug Dispos. 2013 Apr;34(3):165-75 - PubMed
  45. PLoS Comput Biol. 2020 Oct 22;16(10):e1008258 - PubMed
  46. Biochim Biophys Acta Biomembr. 2017 Oct;1859(10):2021-2039 - PubMed
  47. iScience. 2021 May 29;24(6):102667 - PubMed
  48. Lancet. 2013 Jul 20;382(9888):260-72 - PubMed
  49. Wiley Interdiscip Rev Syst Biol Med. 2012 May-Jun;4(3):221-35 - PubMed
  50. Annu Rev Pharmacol Toxicol. 2018 Jan 6;58:663-687 - PubMed
  51. Mol Pharm. 2017 Mar 6;14(3):605-613 - PubMed

Publication Types