Display options
Share it on

Antioxidants (Basel). 2021 Nov 14;10(11). doi: 10.3390/antiox10111808.

OncomiR miR-182-5p Enhances Radiosensitivity by Inhibiting the Radiation-Induced Antioxidant Effect through SESN2 in Head and Neck Cancer.

Antioxidants (Basel, Switzerland)

Min-Ying Lin, Yu-Chan Chang, Shan-Ying Wang, Muh-Hwa Yang, Chih-Hsien Chang, Michael Hsiao, Richard N Kitsis, Yi-Jang Lee

Affiliations

  1. Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei Branch, Taipei 112, Taiwan.
  2. Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan.
  3. Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei Branch, Taipei 112, Taiwan.
  4. Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 112, Taiwan.
  5. Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei Branch, Taipei 112, Taiwan.
  6. Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan 325207, Taiwan.
  7. Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.
  8. Departments of Medicine (Cardiology) and Cell Biology and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA.

PMID: 34829679 PMCID: PMC8614815 DOI: 10.3390/antiox10111808

Abstract

Radiotherapy is routinely used for the treatment of head and neck squamous cell carcinoma (HNSCC). However, the therapeutic efficacy is usually reduced by acquired radioresistance and locoregional recurrence. In this study, The Cancer Genome Atlas (TCGA) analysis showed that radiotherapy upregulated the miR-182/96/183 cluster and that miR-182 was the most significantly upregulated. Overexpression of miR-182-5p enhanced the radiosensitivity of HNSCC cells by increasing intracellular reactive oxygen species (ROS) levels, suggesting that expression of the miR-182 family is beneficial for radiotherapy. By intersecting the gene targeting results from three microRNA target prediction databases, we noticed that sestrin2 (SESN2), a molecule resistant to oxidative stress, was involved in 91 genes predicted in all three databases to be directly recognized by miR-182-5p. Knockdown of SESN2 enhanced radiation-induced ROS and cytotoxicity in HNSCC cells. In addition, the radiation-induced expression of SESN2 was repressed by overexpression of miR-182-5p. Reciprocal expression of the miR-182-5p and SESN2 genes was also analyzed in the TCGA database, and a high expression of miR-182-5p combined with a low expression of SESN2 was associated with a better survival rate in patients receiving radiotherapy. Taken together, the current data suggest that miR-182-5p may regulate radiation-induced antioxidant effects and mediate the efficacy of radiotherapy.

Keywords: SESN2; antioxidant; head and neck squamous cell carcinoma; miR-182-5p; miR-182/96/183 cluster; radioresistance

References

  1. Cell Metab. 2013 Jan 8;17(1):73-84 - PubMed
  2. Trends Cell Biol. 2015 Nov;25(11):651-665 - PubMed
  3. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2607-10 - PubMed
  4. J Cell Biochem. 2007 Mar 1;100(4):883-96 - PubMed
  5. Oncogene. 2020 Apr;39(18):3638-3649 - PubMed
  6. Redox Biol. 2020 Sep;36:101607 - PubMed
  7. Breast Cancer Res. 2014 Nov 14;16(6):473 - PubMed
  8. Nat Commun. 2016 Feb 24;7:10726 - PubMed
  9. Cell Signal. 2013 Jan;25(1):150-8 - PubMed
  10. J Cancer Res Ther. 2018;14(7):1525-1534 - PubMed
  11. J BUON. 2020 Sep-Oct;25(5):2279-2286 - PubMed
  12. Cell Metab. 2013 Dec 3;18(6):792-801 - PubMed
  13. Med Sci Monit. 2019 Aug 03;25:5757-5770 - PubMed
  14. BMC Ophthalmol. 2020 Jun 17;20(1):233 - PubMed
  15. Mol Cancer Ther. 2014 Jul;13(7):1729-39 - PubMed
  16. Sci Rep. 2016 Oct 21;6:35871 - PubMed
  17. Int J Cancer. 2010 Mar 1;126(5):1166-76 - PubMed
  18. Cancer Res. 2012 Sep 15;72(18):4707-13 - PubMed
  19. Oral Oncol. 2006 Nov;42(10):979-86 - PubMed
  20. Cells. 2020 Jul 09;9(7): - PubMed
  21. Nucleic Acids Res. 2019 Apr 23;47(7):3353-3364 - PubMed
  22. Front Immunol. 2019 Dec 04;10:2797 - PubMed
  23. Cancer Res. 2011 Feb 1;71(3):1103-14 - PubMed
  24. Science. 2004 Apr 23;304(5670):596-600 - PubMed
  25. Free Radic Biol Med. 2012 Aug 15;53(4):834-41 - PubMed
  26. Cell Mol Gastroenterol Hepatol. 2021;12(3):921-942 - PubMed
  27. RNA. 2013 Feb;19(2):230-42 - PubMed
  28. Cancer Res. 2002 Dec 15;62(24):7350-6 - PubMed
  29. BMC Cancer. 2009 Nov 18;9:401 - PubMed
  30. Int J Oral Sci. 2020 Jun 24;12(1):19 - PubMed
  31. Eur Rev Med Pharmacol Sci. 2019 Feb;23(4):1494-1501 - PubMed
  32. Cell Metab. 2009 Oct;10(4):273-84 - PubMed
  33. CA Cancer J Clin. 2021 May;71(3):209-249 - PubMed
  34. J Clin Invest. 2013 Jul;123(7):2921-34 - PubMed
  35. Nat Rev Dis Primers. 2020 Nov 26;6(1):92 - PubMed
  36. Apoptosis. 2002 Aug;7(4):367-72 - PubMed
  37. Acta Pharmacol Sin. 2015 Oct;36(10):1200-11 - PubMed
  38. Exp Ther Med. 2019 Apr;17(4):2457-2464 - PubMed
  39. Oncotarget. 2016 Jul 5;7(27):42805-42825 - PubMed
  40. Cell Death Dis. 2013 Oct 31;4:e899 - PubMed
  41. Oncogene. 2002 Sep 5;21(39):6017-31 - PubMed
  42. Free Radic Biol Med. 2021 Mar;165:385-394 - PubMed
  43. Nucleic Acids Res. 2014 Jan;42(Database issue):D92-7 - PubMed
  44. J Clin Oncol. 2006 May 10;24(14):2137-50 - PubMed
  45. Cell. 2018 Mar 22;173(1):20-51 - PubMed
  46. Int J Mol Sci. 2019 Sep 11;20(18): - PubMed
  47. Sci Rep. 2017 Apr 11;7:46307 - PubMed
  48. Cell. 2008 Aug 8;134(3):451-60 - PubMed
  49. Int J Cancer. 2019 Apr 15;144(8):1941-1953 - PubMed
  50. Oral Oncol. 2015 Nov;51(11):1051-1055 - PubMed
  51. Pharmacol Res. 2021 Feb;164:105331 - PubMed
  52. Oxid Med Cell Longev. 2014;2014:960362 - PubMed
  53. J Cell Physiol. 2021 Jan;236(1):392-404 - PubMed
  54. Head Neck. 2015 May;37(5):763-70 - PubMed
  55. Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1814-9 - PubMed
  56. J Hematol Oncol. 2018 Jan 24;11(1):12 - PubMed
  57. J Biol Chem. 2000 Jul 28;275(30):22916-24 - PubMed
  58. Ann Hepatol. 2019 Jan - Feb;18(1):116-125 - PubMed
  59. EMBO J. 2004 Oct 13;23(20):4051-60 - PubMed
  60. Oral Oncol. 2005 Nov;41(10):1034-43 - PubMed
  61. Biochim Biophys Acta. 2015 May;1849(5):544-53 - PubMed
  62. Med Hypotheses. 2011 Feb;76(2):259-63 - PubMed
  63. Free Radic Res. 2014 Mar;48(3):282-91 - PubMed
  64. Front Oncol. 2021 Mar 18;11:670714 - PubMed
  65. Mol Biol Rep. 2019 Jun;46(3):2693-2701 - PubMed
  66. Radiother Oncol. 2018 Nov;129(2):352-363 - PubMed
  67. Cell Cycle. 2015;14(10):1548-58 - PubMed
  68. J Cell Physiol. 2018 Oct;233(10):6630-6637 - PubMed
  69. Hum Genet. 2003 May;112(5-6):573-80 - PubMed
  70. FEBS Lett. 2011 Jun 23;585(12):1853-8 - PubMed
  71. Oncol Res. 1992;4(8-9):349-57 - PubMed
  72. Oncotarget. 2018 Mar 23;9(22):16028-16042 - PubMed

Publication Types

Grant support