Display options
Share it on

Thyroid Res. 2021 Dec 03;14(1):27. doi: 10.1186/s13044-021-00118-w.

Alginate-based 3D cell culture technique to evaluate the half-maximal inhibitory concentration: an in vitro model of anticancer drug study for anaplastic thyroid carcinoma.

Thyroid research

Hilda Samimi, Alireza Naderi Sohi, Shiva Irani, Ehsan Arefian, Mojdeh Mahdiannasser, Parviz Fallah, Vahid Haghpanah

Affiliations

  1. Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
  2. Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
  3. Department of Nanotechnology and Tissue Engineering, Stem Cell Technology Research Center, Tehran, Iran.
  4. Molecular Virology Lab, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
  5. Department of Laboratory Science, Faculty of Allied Medicine, Alborz University of Medical Sciences (ABZUMS), Taleghani Boulevard, Taleghani Square, Karaj, 3155717453, Iran. [email protected].
  6. Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. [email protected].
  7. Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. [email protected].

PMID: 34861882 PMCID: PMC8641225 DOI: 10.1186/s13044-021-00118-w

Abstract

BACKGROUND: Three-dimensional (3D) cell culture methods are identified for simulating the biological microenvironment and demonstrating more similarity to in vivo circumstances. Anaplastic thyroid carcinoma (ATC) is a lethal endocrine malignancy. Despite different treatment approaches, no improvement in the survival rate of the patients has been shown. In this study, we used the 3D in vitro ATC model to investigate the cytotoxic effect of BI-847325 anticancer drug in two-dimensional (2D)- and 3D- cultured cells.

METHODS: Human ATC cell lines, C643 and SW1736, were cultured in one percentage (w/v) sodium alginate. Spheroids were incubated in medium for one week. The reproducibility of the fabrication of alginate beads was evaluated. Encapsulation of the cells in alginate was examined by DAPI (4

RESULTS: The half-maximal inhibitory concentration (IC

CONCLUSIONS: The findings of this study are beneficial for developing in vitro ATC 3D models to analyze the efficacy of different chemotherapy drugs and formulations.

© 2021. The Author(s).

Keywords: Anaplastic thyroid carcinoma; Anticancer drug; Half-maximal inhibitory concentration; Three-dimensional cell culture; Two-dimensional cell culture

References

  1. Cancer Res. 2011 Feb 1;71(3):716-24 - PubMed
  2. Biomaterials. 2005 Mar;26(9):979-86 - PubMed
  3. EPMA J. 2019 Jul 31;10(3):195-209 - PubMed
  4. Clin Cancer Res. 2010 Dec 1;16(23):5692-702 - PubMed
  5. Nat Rev Mol Cell Biol. 2007 Oct;8(10):839-45 - PubMed
  6. J Clin Pharmacol. 2005 Aug;45(8):872-7 - PubMed
  7. Mol Carcinog. 2013 Mar;52(3):167-82 - PubMed
  8. Adv Drug Deliv Rev. 2014 Apr;69-70:29-41 - PubMed
  9. Ann Surg Oncol. 2002 Jan-Feb;9(1):57-64 - PubMed
  10. Mol Oncol. 2007 Jun;1(1):84-96 - PubMed
  11. Ann Surg Oncol. 2006 Apr;13(4):453-64 - PubMed
  12. PLoS One. 2013;8(1):e53708 - PubMed
  13. Front Pharmacol. 2018 Jan 23;9:6 - PubMed
  14. Nat Rev Mol Cell Biol. 2006 Mar;7(3):211-24 - PubMed
  15. Chem Rev. 2009 Jul;109(7):3200-8 - PubMed
  16. Mol Pharm. 2008 Sep-Oct;5(5):849-62 - PubMed
  17. Thyroid. 2009 Dec;19(12):1333-42 - PubMed
  18. Proc Natl Acad Sci U S A. 2009 Jan 13;106(2):399-404 - PubMed
  19. JAMA. 2006 May 10;295(18):2164-7 - PubMed
  20. Cancer Res. 2004 Sep 1;64(17):6304-9 - PubMed
  21. Oncogene. 2009 Jan 22;28(3):461-8 - PubMed
  22. Biotechnol Lett. 2006 Sep;28(17):1361-70 - PubMed
  23. Clin Cancer Res. 2007 May 1;13(9):2804-10 - PubMed
  24. Crit Rev Oncol Hematol. 2015 Jan;93(1):60-73 - PubMed
  25. Biomaterials. 2011 Nov;32(31):7905-12 - PubMed
  26. Clin Cancer Res. 2019 May 15;25(10):3141-3151 - PubMed
  27. Clin Cancer Res. 2002 Mar;8(3):878-84 - PubMed
  28. Breast Cancer Res Treat. 2010 Jul;122(1):35-43 - PubMed
  29. Nat Rev Drug Discov. 2010 Mar;9(3):203-14 - PubMed
  30. Tissue Eng Part B Rev. 2008 Mar;14(1):61-86 - PubMed
  31. Life Sci. 2016 Feb 1;146:34-9 - PubMed
  32. Acc Chem Res. 2008 Jan;41(1):139-48 - PubMed
  33. Expert Opin Drug Discov. 2012 Sep;7(9):819-30 - PubMed
  34. N Engl J Med. 2014 Oct 9;371(15):1426-33 - PubMed
  35. Biomaterials. 2012 Feb;33(5):1437-44 - PubMed
  36. Tissue Eng Part A. 2013 Mar;19(5-6):669-84 - PubMed
  37. Mol Cancer Ther. 2016 Oct;15(10):2388-2398 - PubMed
  38. Thyroid. 2007 Aug;17(8):707-15 - PubMed
  39. Methods Enzymol. 1994;235:29-39 - PubMed
  40. Nat Rev Endocrinol. 2011 Jul 26;7(10):609-16 - PubMed
  41. Clin Oncol (R Coll Radiol). 2010 Aug;22(6):395-404 - PubMed
  42. BMC Surg. 2013;13 Suppl 2:S44 - PubMed
  43. Acta Med Iran. 2017 Mar;55(3):200-208 - PubMed
  44. Biomaterials. 2010 Feb;31(6):1180-90 - PubMed
  45. Biomaterials. 2010 Nov;31(32):8494-506 - PubMed
  46. Cancer Manag Res. 2021 Mar 15;13:2455-2475 - PubMed
  47. J Biosci Bioeng. 2011 May;111(5):590-3 - PubMed
  48. Mol Cancer. 2018 Oct 23;17(1):154 - PubMed
  49. J Clin Endocrinol Metab. 2014 Feb;99(2):E276-85 - PubMed

Publication Types