Display options
Share it on

Int J Mol Sci. 2021 Nov 13;22(22). doi: 10.3390/ijms222212282.

Nitric Oxide-Dependent Mechanisms Underlying MK-801- or Scopolamine-Induced Memory Dysfunction in Animals: Mechanistic Studies.

International journal of molecular sciences

Paulina Cieślik, Anna Siekierzycka, Adrianna Radulska, Agata Płoska, Grzegorz Burnat, Piotr Brański, Leszek Kalinowski, Joanna M Wierońska

Affiliations

  1. Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Sm?tna Street, 31-343 Kraków, Poland.
  2. Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gda?sk, 7 D?binki Street, 80-211 Gda?sk, Poland.
  3. Biobanking and Biomoleclular Resources Research Infrastructure Consortium Poland (BBMRI.pl), 7 D?binki Street, 80-211 Gda?sk, Poland.
  4. BioTechMed Centre, Department of Mechanics of Materials and Structures, University of Technology, 11/12 Narutowicza, 80-233 Gda?sk, Poland.

PMID: 34830164 PMCID: PMC8624219 DOI: 10.3390/ijms222212282

Abstract

MK-801, an NMDA receptor antagonist, and scopolamine, a cholinergic receptor blocker, are widely used as tool compounds to induce learning and memory deficits in animal models to study schizophrenia or Alzheimer-type dementia (AD), respectively. Memory impairments are observed after either acute or chronic administration of either compound. The present experiments were performed to study the nitric oxide (NO)-related mechanisms underlying memory dysfunction induced by acute or chronic (14 days) administration of MK-801 (0.3 mg/kg, i.p.) or scopolamine (1 mg/kg, i.p.). The levels of L-arginine and its derivatives, L-citrulline, L-glutamate, L-glutamine and L-ornithine, were measured. The expression of constitutive nitric oxide synthases (cNOS), dimethylaminohydrolase (DDAH1) and protein arginine N-methyltransferases (PMRTs) 1 and 5 was evaluated, and the impact of the studied tool compounds on cGMP production and NMDA receptors was measured. The studies were performed in both the cortex and hippocampus of mice. S-nitrosylation of selected proteins, such as GLT-1, APP and tau, was also investigated. Our results indicate that the availability of L-arginine decreased after chronic administration of MK-801 or scopolamine, as both the amino acid itself as well as its level in proportion to its derivatives (SDMA and NMMA) were decreased. Additionally, among all three methylamines, SDMA was the most abundant in the brain (~70%). Administration of either compound impaired eNOS-derived NO production, increasing the monomer levels, and had no significant impact on nNOS. Both compounds elevated DDAH1 expression, and slight decreases in PMRT1 and PMRT5 in the cortex after scopolamine (acute) and MK-801 (chronic) administration were observed in the PFC, respectively. Administration of MK-801 induced a decrease in the cGMP level in the hippocampus, accompanied by decreased NMDA expression, while increased cGMP production and decreased NMDA receptor expression were observed after scopolamine administration. Chronic MK-801 and scopolamine administration affected S-nitrosylation of GLT-1 transport protein. Our results indicate that the analyzed tool compounds used in pharmacological models of schizophrenia or AD induce changes in NO-related pathways in the brain structures involved in cognition. To some extent, the changes resemble those observed in human samples.

Keywords: ADMA; Alzheimer’s disease; DDAH1; L-arginine; MK-801; NMMA; S-nitrosylation; SDAMA; cGMP; schizophrenia; scopolamine

References

  1. Brain Sci. 2017 Apr 27;7(5): - PubMed
  2. Front Aging Neurosci. 2018 May 07;10:129 - PubMed
  3. Oxid Med Cell Longev. 2016;2016:1245049 - PubMed
  4. Alzheimers Dement. 2018 Dec;14(12):1640-1650 - PubMed
  5. Pharmacol Ther. 2010 Dec;128(3):419-32 - PubMed
  6. Psychiatry Res. 2017 Jul;253:43-48 - PubMed
  7. Oxid Med Cell Longev. 2016;2016:3806157 - PubMed
  8. Neurobiol Aging. 2003 Nov;24(7):903-7 - PubMed
  9. J Am Soc Nephrol. 2006 Apr;17(4):1128-34 - PubMed
  10. J Neurosci. 2010 Nov 24;30(47):15801-10 - PubMed
  11. Neurochem Res. 2019 Mar;44(3):617-626 - PubMed
  12. Arterioscler Thromb Vasc Biol. 2011 Jul;31(7):1540-6 - PubMed
  13. Cold Spring Harb Perspect Biol. 2015 Aug 03;7(8):a021766 - PubMed
  14. Toxins (Basel). 2017 Mar 06;9(3): - PubMed
  15. Int Rev Neurobiol. 2007;78:69-108 - PubMed
  16. Brain Res. 1989 Mar 13;482(1):194-7 - PubMed
  17. J Neural Transm (Vienna). 2002 Sep;109(9):1203-8 - PubMed
  18. Cereb Cortex. 2014 Jul;24(7):1923-36 - PubMed
  19. Brain Res. 2002 Oct 25;953(1-2):135-43 - PubMed
  20. Br J Pharmacol. 1996 Feb;117(4):689-97 - PubMed
  21. Circ Res. 2016 Oct 28;119(10):1128-1134 - PubMed
  22. Sci Rep. 2015 Jul 01;5:9748 - PubMed
  23. PLoS One. 2014 Mar 26;9(3):e93134 - PubMed
  24. J Neurosci. 2003 Oct 15;23(28):9297-304 - PubMed
  25. Neuropsychopharmacology. 2012 Jan;37(1):4-15 - PubMed
  26. Am J Physiol Heart Circ Physiol. 2019 Jan 1;316(1):H80-H88 - PubMed
  27. Neuropharmacology. 2011 Dec;61(8):1452-62 - PubMed
  28. Behav Brain Res. 2019 Feb 1;359:671-685 - PubMed
  29. Front Mol Neurosci. 2019 Jul 09;12:164 - PubMed
  30. Learn Mem. 2007 Apr 05;14(4):254-8 - PubMed
  31. Antioxid Redox Signal. 2003 Jun;5(3):307-17 - PubMed
  32. J Neurosci. 2014 Apr 9;34(15):5285-90 - PubMed
  33. Circulation. 2006 Apr 4;113(13):1708-14 - PubMed
  34. Psychopharmacology (Berl). 2018 Oct;235(10):2897-2913 - PubMed
  35. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2699-704 - PubMed
  36. J Neurochem. 2013 Dec;127(5):691-700 - PubMed
  37. Behav Brain Res. 2001 Dec 14;127(1-2):199-207 - PubMed
  38. J Inherit Metab Dis. 2007 Nov;30(6):865-79 - PubMed
  39. Behav Brain Res. 1997 Dec;89(1-2):1-34 - PubMed
  40. JAMA Neurol. 2014 Apr;71(4):505-8 - PubMed
  41. Cell. 1996 Dec 13;87(6):1025-35 - PubMed
  42. Neurochem Int. 2002 Aug-Sep;41(2-3):143-54 - PubMed
  43. Neuropharmacology. 2020 Sep 1;174:107866 - PubMed
  44. Behav Pharmacol. 1995 Aug;6(5 And 6):455-474 - PubMed
  45. J Biol Chem. 1993 Oct 5;268(28):21120-9 - PubMed
  46. Arch Biochem Biophys. 2010 Feb 15;494(2):130-7 - PubMed
  47. PLoS One. 2014 Aug 25;9(8):e105479 - PubMed
  48. Int J Mol Sci. 2016 Sep 01;17(9): - PubMed
  49. Nat Neurosci. 2000 Jan;3(1):15-21 - PubMed
  50. Life Sci. 2019 Sep 15;233:116695 - PubMed
  51. Annu Rev Neurosci. 2001;24:167-202 - PubMed
  52. J Neurosci. 1999 Apr 1;19(7):2489-99 - PubMed
  53. Neurosci Lett. 1996 Sep 13;215(3):209-11 - PubMed
  54. Food Chem Toxicol. 2013 Nov;61:209-14 - PubMed
  55. J Neurochem. 2015 Sep;134(6):1129-38 - PubMed
  56. Prog Neuropsychopharmacol Biol Psychiatry. 2012 Oct 1;39(1):62-8 - PubMed
  57. J Alzheimers Dis. 2007 May;11(2):207-18 - PubMed
  58. Cell Mol Life Sci. 2006 Jan;63(2):144-62 - PubMed
  59. Front Synaptic Neurosci. 2016 Jun 29;8:17 - PubMed
  60. Int J Mol Sci. 2021 Aug 10;22(16): - PubMed
  61. Isr J Psychiatry Relat Sci. 2010;47(1):4-16 - PubMed
  62. Front Physiol. 2015 May 11;6:139 - PubMed
  63. NPJ Sci Learn. 2019 Jul 2;4:9 - PubMed
  64. Sci Signal. 2015 Jul 07;8(384):ra68 - PubMed
  65. J Physiol. 2013 Aug 15;591(16):3963-79 - PubMed
  66. Front Pharmacol. 2017 Jun 30;8:438 - PubMed
  67. Br J Pharmacol. 1989 Feb;96(2):418-24 - PubMed
  68. J Biol Chem. 1992 Dec 5;267(34):24173-6 - PubMed
  69. Trends Pharmacol Sci. 2009 Jan;30(1):25-31 - PubMed
  70. Lancet Psychiatry. 2018 Jan;5(1):79-92 - PubMed
  71. Eur J Pharmacol. 2010 Dec 15;649(1-3):210-7 - PubMed
  72. Neuron. 2013 May 22;78(4):596-614 - PubMed
  73. Pharmacol Rep. 2015 Dec;67(6):1155-62 - PubMed
  74. Free Radic Biol Med. 2009 Jan 15;46(2):119-26 - PubMed
  75. Biochemistry (Mosc). 2017 Mar;82(3):257-263 - PubMed
  76. Biochim Biophys Acta. 1999 May 5;1411(2-3):334-50 - PubMed
  77. Eur J Neurosci. 1993 Aug 1;5(8):1079-82 - PubMed

Publication Types

Grant support