Display options
Share it on

J Clin Med. 2021 Nov 13;10(22). doi: 10.3390/jcm10225281.

The Clinical Significance of Cerebrospinal Fluid Reticulon 4 (RTN4) Levels in the Differential Diagnosis of Neurodegenerative Diseases.

Journal of clinical medicine

Agnieszka Kulczyńska-Przybik, Maciej Dulewicz, Agnieszka Słowik, Renata Borawska, Alina Kułakowska, Jan Kochanowicz, Barbara Mroczko

Affiliations

  1. Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland.
  2. Department of Neurology, Jagiellonian University, 30-688 Kraków, Poland.
  3. Department of Neurology, Medical University of Bialystok, 15-269 Bialystok, Poland.
  4. Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland.

PMID: 34830564 PMCID: PMC8622503 DOI: 10.3390/jcm10225281

Abstract

Neurodegenerative diseases (NDs) belong to the top global causes of mortality. Diagnostic approaches to improve early diagnosis and differentiation of these diseases are constantly being sought. Therefore, we aimed to assess the cerebrospinal fluid (CSF) concentrations of Reticulon 4 (RTN4) in patients with neurodegenerative diseases and evaluate the potential clinical usefulness of this protein. RTNs are transmembrane proteins mediating neuroanatomical plasticity and functional recovery after central nervous system injury or diseases. According to our best knowledge, this is the first investigation providing the data concerning the dynamic of CSF RTN4 protein levels in patients with different NDs.

METHODS: Overall, 77 newly diagnosed patients with neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS), as well as 21 controls, were enrolled in the study. The CSF concentrations of tested proteins were assessed using immunological assays.

RESULTS: We revealed significantly higher CSF RTN4A levels in patients with AD, PD, and MS in comparison to the controls. Moreover, the comparative analysis of RTN4 concentration between different neurodegenerative diseases revealed the highest concentration of RTN4A in AD patients and a statistically significant difference between AD vs. PD, and AD vs. MS groups. The increased CSF level of the protein correlated with Tau, and pTau181 proteins in AD as well as in PD patients.

CONCLUSIONS: Our study presents a previously not identified clinical utility of RTN4 in the differential diagnosis of neurodegenerative diseases.

Keywords: Alzheimer’s disease; Parkinson’s disease; RTN-4A; biomarkers; multiple sclerosis; neurodegenerative diseases; reticulons

References

  1. J Neurochem. 2012 Apr;121(1):77-98 - PubMed
  2. J Neuropathol Exp Neurol. 2006 May;65(5):433-44 - PubMed
  3. Neurobiol Learn Mem. 2017 Feb;138:154-163 - PubMed
  4. Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2569-74 - PubMed
  5. Am J Med Genet B Neuropsychiatr Genet. 2011 Jul;156B(5):581-92 - PubMed
  6. Cell Mol Neurobiol. 2014 Nov;34(8):1131-41 - PubMed
  7. J Neuroimmunol. 2003 Dec;145(1-2):139-47 - PubMed
  8. Alzheimers Dement. 2011 May;7(3):263-9 - PubMed
  9. Rev Neurol. 2004 Sep 1-15;39(5):440-6 - PubMed
  10. Neurology. 2007 Jan 23;68(4):283-7 - PubMed
  11. Neuroscience. 2015 Mar 12;288:59-72 - PubMed
  12. CNS Drugs. 2017 Mar;31(3):187-198 - PubMed
  13. J Alzheimers Dis. 2015;43(3):1031-7 - PubMed
  14. Neuropathology. 2010 Dec;30(6):574-9 - PubMed
  15. Lancet Neurol. 2016 Jun;15(7):673-684 - PubMed
  16. Brain Res Mol Brain Res. 2005 Jan 5;133(1):119-30 - PubMed
  17. Nat Rev Neurosci. 2010 Dec;11(12):799-811 - PubMed
  18. Mol Med Rep. 2021 Mar;23(3): - PubMed
  19. Front Immunol. 2019 Apr 12;10:726 - PubMed
  20. Nat Neurosci. 2004 Jul;7(7):736-44 - PubMed
  21. Cereb Cortex. 2010 Aug;20(8):1769-79 - PubMed
  22. Acta Neuropathol. 2018 Dec;136(6):821-853 - PubMed
  23. J Neuroinflammation. 2016 Mar 03;13(1):56 - PubMed
  24. Lancet Neurol. 2018 Feb;17(2):162-173 - PubMed
  25. Eur J Neurol. 2013 Jan;20(1):16-34 - PubMed
  26. PLoS One. 2019 May 29;14(5):e0217208 - PubMed
  27. Cells. 2021 Jan 31;10(2): - PubMed
  28. Neuroscientist. 2013 Aug;19(4):394-408 - PubMed
  29. Neurosci Bull. 2014 Apr;30(2):346-58 - PubMed
  30. Nat Med. 2004 Sep;10(9):959-65 - PubMed
  31. Nervenarzt. 2016 Dec;87(12):1305-1309 - PubMed
  32. J Neural Transm (Vienna). 2009 Sep;116(9):1163-7 - PubMed
  33. Neurology. 2008 Jul 1;71(1):35-7 - PubMed
  34. Sci Rep. 2017 Jul 21;7(1):6145 - PubMed
  35. Curr Alzheimer Res. 2016;13(5):469-74 - PubMed
  36. Neural Regen Res. 2015 Aug;10(8):1223-4 - PubMed
  37. Eur J Neurosci. 2006 Sep;24(5):1237-44 - PubMed
  38. J Neuropathol Exp Neurol. 2005 Feb;64(2):129-38 - PubMed
  39. Mol Med Rep. 2012 Mar;5(3):619-24 - PubMed
  40. J Neurosci. 2014 Jun 25;34(26):8685-98 - PubMed
  41. Res Vet Sci. 2007 Dec;83(3):287-301 - PubMed
  42. World J Biol Psychiatry. 2018 Jun;19(4):244-328 - PubMed
  43. Nat Med. 2015 Oct;21(10):1154-62 - PubMed
  44. Neurosci Bull. 2016 Dec;32(6):577-584 - PubMed
  45. Psychiatry Investig. 2017 May;14(3):344-349 - PubMed
  46. Int J Biochem Cell Biol. 2014 Dec;57:1-6 - PubMed
  47. Cell Mol Life Sci. 2006 Apr;63(7-8):877-89 - PubMed
  48. Front Cell Neurosci. 2016 Apr 05;10:87 - PubMed
  49. Prog Neurobiol. 2011 Dec;95(4):670-85 - PubMed
  50. Proc Natl Acad Sci U S A. 2007 Sep 4;104(36):14430-5 - PubMed
  51. J Cereb Blood Flow Metab. 2007 Jun;27(6):1096-107 - PubMed
  52. Cell Mol Neurobiol. 2021 Jul 5;: - PubMed
  53. Neuroscience. 2014 Jan 3;256:456-66 - PubMed

Publication Types

Grant support