Display options
Share it on

Clin Pharmacokinet. 2021 Nov 13; doi: 10.1007/s40262-021-01076-0. Epub 2021 Nov 13.

Pre- and Postnatal Maturation are Important for Fentanyl Exposure in Preterm and Term Newborns: A Pooled Population Pharmacokinetic Study.

Clinical pharmacokinetics

Yunjiao Wu, Swantje Völler, Robert B Flint, Sinno H P Simons, Karel Allegaert, Vineta Fellman, Catherijne A J Knibbe

Affiliations

  1. Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands.
  2. Pharmacy, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands.
  3. Department of Pediatrics, Division of Neonatology, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands.
  4. Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, the Netherlands.
  5. Departments of Development and Regeneration and Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
  6. Department of Clinical Sciences, Lund, Pediatrics, Lund University, Lund, Sweden.
  7. Folkhälsan Research Center, Helsinki, Finland.
  8. Children's Hospital, University of Helsinki, Helsinki, Finland.
  9. Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands. [email protected].
  10. Department of Pediatrics, Division of Neonatology, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands. [email protected].
  11. Department of Clinical Pharmacy, St Antonius Hospital, Nieuwegein, the Netherlands. [email protected].

PMID: 34773609 DOI: 10.1007/s40262-021-01076-0

Abstract

BACKGROUND AND OBJECTIVE: Fentanyl is an opioid commonly used to prevent and treat severe pain in neonates; however, its use is off label and mostly based on bodyweight. Given the limited pharmacokinetic information across the entire neonatal age range, we characterized the pharmacokinetics of fentanyl across preterm and term neonates to individualize dosing.

METHODS: We pooled data from two previous studies on 164 newborns with a median gestational age of 29.0 weeks (range 23.9-42.3), birthweight of 1055 g (range 390-4245), and postnatal age (PNA) of 1 day (range 0-68). In total, 673 plasma samples upon bolus dosing (69 patients; median dose 2.1 μg/kg, median 2 boluses per patient) or continuous infusions (95 patients; median dose 1.1 μg/kg/h for 30 h) with and without boluses were used for population pharmacokinetic modeling in NONMEM

RESULTS: Clearance in neonates with birthweight of 2000 and 3000 g was 2.8- and 5.0-fold the clearance in a neonate with birthweight of 1000 g, respectively. Fentanyl clearance at PNA of 7, 14, and 21 days was 2.7-fold, 3.8-fold, and 4.6-fold the clearance at 1 day, respectively. Bodyweight-based dosing resulted in large differences in fentanyl concentrations. Depending on PNA and birthweight, fentanyl concentrations increased slowly after the start of therapy for both intermittent boluses and continuous infusion and reached a maximum concentration at 12-48 h.

CONCLUSIONS: As both prenatal and postnatal maturation are important for fentanyl exposure, we propose a birthweight- and PNA-based dosage regimen. To provide rapid analgesia in the first 24 h of treatment, additional loading doses need to be considered.

© 2021. The Author(s).

References

  1. Anand KJ. Consensus statement for the prevention and management of pain in the newborn. Arch Pediatr Adolesc Med. 2001;155(2):173–80. - PubMed
  2. Circumcision WE. The uniquely American medical enigma. Urol Clin N Am. 1985;12(1):123–32. - PubMed
  3. Anand KJS. Clinical importance of pain and stress in preterm neonates. Neonatology. 1998;73(1):1–9. - PubMed
  4. Vinall J, Miller SP, Bjornson BH, Fitzpatrick KP, Poskitt KJ, Brant R, et al. Invasive procedures in preterm children: brain and cognitive development at school age. Pediatrics. 2014;133(3):412–21. - PubMed
  5. Grunau RE, Whitfield MF, Petrie-Thomas J, Synnes AR, Cepeda IL, Keidar A, et al. Neonatal pain, parenting stress and interaction, in relation to cognitive and motor development at 8 and 18 months in preterm infants. Pain. 2009;143(1–2):138–46. - PubMed
  6. Saarenmaa E, Huttunen P, Leppäluoto J, Meretoja O, Fellman V. Advantages of fentanyl over morphine in analgesia for ventilated newborn infants after birth: a randomized trial. J Pediatr. 1999;134(2):144–50. - PubMed
  7. Anand KJ, Hall RW. Pharmacological therapy for analgesia and sedation in the newborn. Arch Dis Child Fetal Neonatal Ed. 2006;91(6):F448–53. - PubMed
  8. Pacifici GM. Clinical pharmacology of fentanyl in preterm infants. A review. Pediatr Neonatol. 2015;56(3):143–8. - PubMed
  9. Aranda JV, Carlo W, Hummel P, Thomas R, Lehr VT, Anand KJ. Analgesia and sedation during mechanical ventilation in neonates. Clin Ther. 2005;27(6):877–99. - PubMed
  10. Meesters NJ, van Dijk M, Knibbe CA, Keyzer-Dekker CM, Tibboel D, Simons SH. Infants operated on for necrotizing enterocolitis: towards evidence-based pain guidelines. Neonatology. 2016;110(3):190–7. - PubMed
  11. Lago P, Garetti E, Merazzi D, Pieragostini L, Ancora G, Pirelli A, et al. Guidelines for procedural pain in the newborn. Acta Paediatr. 2009;98(6):932–9. - PubMed
  12. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology–drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157–67. - PubMed
  13. Van Donge T, Mian P, Tibboel D, Van Den Anker J, Allegaert K. Drug metabolism in early infancy: opioids as an illustration. Expert Opin Drug Metab Toxicol. 2018;14(3):287–301. - PubMed
  14. Kovar L, Weber A, Zemlin M, Kohl Y, Bals R, Meibohm B, et al. Physiologically-based pharmacokinetic (PBPK) modeling providing insights into fentanyl pharmacokinetics in adults and pediatric patients. Pharmaceutics. 2020;12(10):908. - PubMed
  15. Lacroix D, Sonnier M, Moncion A, Cheron G, Cresteil T. Expression of CYP3A in the human liver—evidence that the Shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem. 1997;247(2):625–34. - PubMed
  16. Hines RN. Ontogeny of human hepatic cytochromes P450. J Biochem Mol Toxicol. 2007;21(4):169–75. - PubMed
  17. Gow PJ, Ghabrial H, Smallwood RA, Morgan DJ, Ching MS. Neonatal hepatic drug elimination. Pharmacol Toxicol. 2001;88(1):3–15. - PubMed
  18. McNamara PJ, Alcorn J. Protein binding predictions in infants. AAPS Pharm Sci. 2002;4(1):E4. - PubMed
  19. Salem F, Abduljalil K, Kamiyama Y, Rostami-Hodjegan A. Considering age variation when coining drugs as high versus low hepatic extraction ratio. Drug Metab Dispos. 2016;44(7):1099–102. - PubMed
  20. Allegaert K, van de Velde M, van den Anker J. Neonatal clinical pharmacology. Paediatr Anaesth. 2014;24(1):30–8. - PubMed
  21. Saarenmaa E, Neuvonen PJ, Fellman V. Gestational age and birth weight effects on plasma clearance of fentanyl in newborn infants. J Pediatr. 2000;136(6):767–70. - PubMed
  22. Santeiro ML, Christie J, Stromquist C, Torres BA, Markowsky SJ. Pharmacokinetics of continuous infusion fentanyl in newborns. J Perinatol. 1997;17(2):135–9. - PubMed
  23. Ziesenitz VC, Vaughns JD, Koch G, Mikus G, van den Anker JN. Pharmacokinetics of fentanyl and its derivatives in children: a comprehensive review. Clin Pharmacokinet. 2018;57(2):125–49. - PubMed
  24. Krekels EHJ, van Hasselt JGC, van den Anker JN, Allegaert K, Tibboel D, Knibbe CAJ. Evidence-based drug treatment for special patient populations through model-based approaches. Eur J Pharm Sci. 2017;109s:S22–6. - PubMed
  25. De Cock RFW, Piana C, Krekels EHJ, Danhof M, Allegaert K, Knibbe CAJ. The role of population PK-PD modelling in paediatric clinical research. Eur J Clin Pharmacol. 2011;67(Suppl 1):5–16. - PubMed
  26. Völler S, Flint RB, Andriessen P, Allegaert K, Zimmermann LJI, Liem KD, et al. Rapidly maturing fentanyl clearance in preterm neonates. Arch Dis Child Fetal Neonatal Ed. 2019;104(6):F598. - PubMed
  27. Keizer RJ, Jansen RS, Rosing H, Thijssen B, Beijnen JH, Schellens JHM, et al. Incorporation of concentration data below the limit of quantification in population pharmacokinetic analyses. Pharmacol Res Perspect. 2015;3(2):e00131-e. - PubMed
  28. Flint RB, Bahmany S, van der Nagel BCH, Koch BCP. Simultaneous quantification of fentanyl, sufentanil, cefazolin, doxapram and keto-doxapram in plasma using liquid chromatography-tandem mass spectrometry. Biomed Chromatogr. 2018;32(10):e4290. - PubMed
  29. De Cock RF, Allegaert K, Brussee JM, Sherwin CM, Mulla H, de Hoog M, et al. Simultaneous pharmacokinetic modeling of gentamicin, tobramycin and vancomycin clearance from neonates to adults: towards a semi-physiological function for maturation in glomerular filtration. Pharm Res. 2014;31(10):2643–54. - PubMed
  30. Comets E, Brendel K, Mentré F. Computing normalised prediction distribution errors to evaluate nonlinear mixed-effect models: the npde add-on package for R. Comput Methods Programs Biomed. 2008;90(2):154–66. - PubMed
  31. Anchieta LM, Xavier CC, Colosimo EA, Souza MF. Weight of preterm newborns during the first twelve weeks of life. Braz J Med Biol Res. 2003;36(6):761–70. - PubMed
  32. Dutch Children's Formulary. https://www.kinderformularium.nl/geneesmiddel/543/fentanyl-parenteraal . Accessed 2. Jul 2021. - PubMed
  33. Gauntlett IS, Fisher DM, Hertzka RE, Kuhls E, Spellman MJ, Rudolph C. Pharmacokinetics of fentanyl in neonatal humans and lambs: effects of age. Anesthesiology. 1988;69(5):683–7. - PubMed
  34. Koehntop DE, Rodman JH, Brundage DM, Hegland MG, Buckley JJ. Pharmacokinetics of fentanyl in neonates. Anesth Analg. 1986;65(3):227–32. - PubMed
  35. Salem F, Johnson TN, Abduljalil K, Tucker GT, Rostami-Hodjegan A. A re-evaluation and validation of ontogeny functions for cytochrome P450 1A2 and 3A4 based on in vivo data. Clin Pharmacokinet. 2014;53(7):625–36. - PubMed
  36. Lacroix D, Sonnier M, Moncion A, Cheron G, Cresteil T. Expression of CYP3A in the human liver–evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem. 1997;247(2):625–34. - PubMed
  37. Alcorn J, McNamara PJ. Ontogeny of hepatic and renal systemic clearance pathways in infants: part I. Clin Pharmacokinet. 2002;41(12):959–98. - PubMed
  38. Fugelseth D, Lindemann R, Liestøl K, Kiserud T, Langslet A. Postnatal closure of ductus venosus in preterm infants < or = 32 week. An ultrasonographic study. Early Hum Dev. 1998;53(2):163–9. - PubMed
  39. Kondo M, Itoh S, Kunikata T, Kusaka T, Ozaki T, Isobe K, et al. Time of closure of ductus venosus in term and preterm neonates. Arch Dis Child Fetal Neonatal Ed. 2001;85(1):F57–9. - PubMed
  40. Vet NJ, Brussee JM, de Hoog M, Mooij MG, Verlaat CW, Jerchel IS, et al. Inflammation and organ failure severely affect midazolam clearance in critically ill children. Am J Respir Crit Care Med. 2016;194(1):58–66. - PubMed
  41. Masey SA, Koehler RC, Ruck JR, Pepple JM, Rogers MC, Traystman RJ. Effect of abdominal distension on central and regional hemodynamics in neonatal lambs. Pediatr Res. 1985;19(12):1244–9. - PubMed
  42. Favié LMA, Groenendaal F, van den Broek MPH, Rademaker CMA, de Haan TR, van Straaten HLM, et al. Phenobarbital, midazolam pharmacokinetics, effectiveness, and drug-drug interaction in asphyxiated neonates undergoing therapeutic hypothermia. Neonatology. 2019;116(2):154–62. - PubMed
  43. Schug SA, Ting S. Fentanyl formulations in the management of pain: an update. Drugs. 2017;77(7):747–63. - PubMed
  44. Bista SR, Haywood A, Hardy J, Lobb M, Tapuni A, Norris R. Protein binding of fentanyl and its metabolite nor-fentanyl in human plasma, albumin and α-1 acid glycoprotein. Xenobiotica. 2015;45(3):207–12. - PubMed
  45. Peng PW, Sandler AN. A review of the use of fentanyl analgesia in the management of acute pain in adults. Anesthesiology. 1999;90(2):576–99. - PubMed
  46. Fernandez E, Perez R, Hernandez A, Tejada P, Arteta M, Ramos JT. Factors and mechanisms for pharmacokinetic differences between pediatric population and adults. Pharmaceutics. 2011;3(1):53–72. - PubMed
  47. Bartelink IH, Boelens JJ, Bredius RG, Egberts AC, Wang C, Bierings MB, et al. Body weight-dependent pharmacokinetics of busulfan in paediatric haematopoietic stem cell transplantation patients: towards individualized dosing. Clin Pharmacokinet. 2012;51(5):331–45. - PubMed
  48. Koo WWK, Walters JC, Hockman EM. Body composition in human infants at birth and postnatally. J Nutr. 2000;130(9):2188–94. - PubMed
  49. Roth B, Schlünder C, Houben F, Günther M, Theisohn M. Analgesia and sedation in neonatal intensive care using fentanyl by continuous infusion. Dev Pharmacol Ther. 1991;17(3–4):121–7. - PubMed
  50. Abiramalatha T, Mathew SK, Mathew BS, Shabeer MP, Arulappan G, Kumar M, et al. Continuous infusion versus intermittent bolus doses of fentanyl for analgesia and sedation in neonates: an open-label randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 2019;104(4):F433–9. - PubMed
  51. Ku LC, Smith PB. Dosing in neonates: special considerations in physiology and trial design. Pediatr Res. 2015;77(1–1):2–9. - PubMed
  52. Nandi R, Fitzgerald M. Opioid analgesia in the newborn. Eur J Pain. 2005;9(2):105–8. - PubMed

Publication Types

Grant support