Display options
Share it on

Pathogens. 2021 Nov 10;10(11). doi: 10.3390/pathogens10111458.

Kinetic Changes of Peripheral Blood Monocyte Subsets and Expression of Co-Stimulatory Molecules during Acute Dengue Virus Infection.

Pathogens (Basel, Switzerland)

Sakaorat Lertjuthaporn, Rassamon Keawvichit, Korakot Polsrila, Kasama Sukapirom, Ampaiwan Chuansumrit, Kulkanya Chokephaibulkit, Aftab A Ansari, Ladawan Khowawisetsut, Kovit Pattanapanyasat

Affiliations

  1. Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand.
  2. Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand.
  3. Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
  4. Center of Excellence for Microparticle and Exosome in Diseases, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
  5. Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand.
  6. Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
  7. Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
  8. Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.

PMID: 34832614 PMCID: PMC8625762 DOI: 10.3390/pathogens10111458

Abstract

Monocytes, one of the main target cells for dengue virus (DENV) infection, contribute to the resolution of viremia and to pathogenesis. We performed a longitudinal study by a detailed phenotypic comparison of classical (CD14++CD16-, non-classical (CD14+CD16++) and intermediate (CD14++CD16+) monocyte subsets in blood samples from dengue fever (DF) to the severe dengue hemorrhagic fever (DHF) and healthy individuals. Various costimulatory molecules of CD40, CD80, CD86 and inducible costimulatory ligand (ICOSL) expressed on these three monocyte subsets were also analyzed. DENV-infected patients showed an increase in the frequency of intermediate monocytes and a decrease in the classical monocytes when compared to healthy individuals. Although these differences did not correlate with disease severity, changes during the early phase of infection gradually returned to normal in the defervescence phase. Moreover, decreased frequency of classical monocytes was associated with a significant up-regulation of co-stimulatory molecules CD40, CD86 and ICOSL. Kinetics of these co-stimulatory molecule-expressing classical monocytes showed different patterns throughout the sampling times of acute DENV infection. Different distribution of monocyte subsets and their co-stimulatory molecules in the peripheral blood during acute infection might exacerbate immune responses like cytokine storms and ADE, and future studies on intracellular molecular pathways utilized by these monocyte linages are warranted.

Keywords: co-stimulation; dengue infection; flow cytometry; monocyte

References

  1. Virology. 2011 Dec 20;421(2):245-52 - PubMed
  2. J Exp Med. 1977 Jul 1;146(1):218-29 - PubMed
  3. Nat Rev Microbiol. 2010 Dec;8(12 Suppl):S7-16 - PubMed
  4. Front Immunol. 2021 May 07;12:665782 - PubMed
  5. Arterioscler Thromb Vasc Biol. 2019 Jan;39(1):25-36 - PubMed
  6. Immunol Lett. 2006 Apr 15;104(1-2):70-5 - PubMed
  7. Cell Host Microbe. 2014 Jul 9;16(1):115-27 - PubMed
  8. Immunity. 2002 Aug;17(2):201-10 - PubMed
  9. Microbiol Spectr. 2014 Dec;2(6): - PubMed
  10. Microbiol Mol Biol Rev. 2015 Sep;79(3):281-91 - PubMed
  11. Arch Virol. 2013 Jul;158(7):1445-59 - PubMed
  12. Front Immunol. 2019 Aug 30;10:2035 - PubMed
  13. Lancet Infect Dis. 2010 Oct;10(10):712-22 - PubMed
  14. Virology. 2008 Jul 5;376(2):429-35 - PubMed
  15. Immunology. 2019 Feb;156(2):147-163 - PubMed
  16. J Biomed Sci. 2018 Aug 27;25(1):64 - PubMed
  17. Annu Rev Immunol. 2011;29:587-619 - PubMed
  18. Nat Commun. 2019 Aug 29;10(1):3897 - PubMed
  19. J Exp Med. 1968 Sep 1;128(3):415-35 - PubMed
  20. Arch Dermatol Res. 2000 Sep;292(9):437-45 - PubMed
  21. Nature. 2013 Apr 25;496(7446):504-7 - PubMed
  22. Science. 2017 Apr 21;356(6335): - PubMed
  23. J Infect Dis. 2007 Jun 15;195(12):1808-17 - PubMed
  24. Annu Rev Immunol. 2019 Apr 26;37:439-456 - PubMed
  25. Methods Mol Biol. 2017;1591:73-84 - PubMed
  26. J Infect Dis. 2004 Apr 15;189(8):1411-8 - PubMed
  27. Nat Rev Immunol. 2011 Oct 25;11(11):788-98 - PubMed
  28. Immunity. 2010 Sep 24;33(3):375-86 - PubMed
  29. Am J Trop Med Hyg. 1983 Jan;32(1):154-6 - PubMed
  30. PLoS One. 2018 Jul 12;13(7):e0200564 - PubMed
  31. PLoS One. 2017 Aug 23;12(8):e0183594 - PubMed
  32. Blood. 2010 Oct 21;116(16):e74-80 - PubMed
  33. Nat Rev Immunol. 2011 Jul 15;11(8):532-43 - PubMed
  34. Front Immunol. 2019 Jul 17;10:1642 - PubMed
  35. Eur J Immunol. 2009 Oct;39(10):2809-21 - PubMed
  36. Blood. 2011 Aug 4;118(5):e16-31 - PubMed
  37. Immunol Rev. 2011 May;241(1):180-205 - PubMed
  38. Am J Trop Med Hyg. 2003 Jan;68(1):48-53 - PubMed
  39. J Med Virol. 2008 Jan;80(1):134-46 - PubMed
  40. Virology. 2015 Sep 15;486:27 - PubMed
  41. Immunology. 2010 Jun;130(2):202-16 - PubMed

Publication Types

Grant support