Display options
Share it on

Pathogens. 2021 Nov 12;10(11). doi: 10.3390/pathogens10111468.

In Vitro Infection Dynamics of Japanese Encephalitis Virus in Established Porcine Cell Lines.

Pathogens (Basel, Switzerland)

Shakirat A Adetunji, Dmitriy Smolensky, Dana N Mitzel, Jeana L Owens, Carol G Chitko-McKown, Natalia Cernicchiaro, Leela E Noronha

Affiliations

  1. Center for Outcomes Research and Epidemiology, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
  2. Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA.
  3. National Bio and Agro-Defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA.
  4. Roman L. Hruska U.S. Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, NE 68933, USA.

PMID: 34832623 PMCID: PMC8618157 DOI: 10.3390/pathogens10111468

Abstract

Japanese encephalitis virus (JEV) is a zoonotic mosquito-borne pathogen that regularly causes severe neurological disease in humans in Southeast Asia and the Western Pacific region. Pigs are one of the main amplifying hosts of JEV and play a central role in the virus transmission cycle. The objective of this study was to identify in vitro cell systems to investigate early effects of JEV infection including viral replication and host cell death. Here, we demonstrate the susceptibility of several porcine cell lines to the attenuated genotype III JEV strain SA14-14-2. Monolayers of porcine nasal turbinate (PT-K75), kidney (SK-RST), testis (ST), and monocyte-derived macrophage (CΔ2+) cells were infected with SA14-14-2 for up to five days at a multiplicity of infection (MOI) of 0.1. The hamster kidney cell line BHK-21, previously shown to be susceptible to SA14-14-2, was used as a positive control. Culture supernatants and cells were collected between 0 and 120 h post infection (hpi), and monolayers were observed for cytopathic effect (CPE) using brightfield microscopy. The number of infectious virus particles was quantified by plaque assay and cell viability was determined using trypan blue staining. An indirect immunofluorescence assay was used to detect the presence of JEV NS1 antigens in cells infected at 1 MOI. All four porcine cell lines demonstrated susceptibility to SA14-14-2 and produced infectious virus by 12 hpi. Virus titers peaked at 48 hpi in CΔ2+, BHK-21, and SK-RST cells, at 72 hpi in PT-K75, and at 120 hpi in ST cells. CPE was visible in infected CΔ2+ and BHK-21 cells, but not the other three cell lines. The proportion of viable cells, as measured by trypan blue exclusion, declined after 24 hpi in BHK-21 and 48 hpi in CΔ2+ cells, but did not substantially decline in SK-RST, PT-K75 or ST cells. At 48 hpi, JEV NS1 was detected in all infected cell lines by fluorescence microscopy. These findings demonstrate several porcine cell lines which have the potential to serve as useful research tools for investigating JEV infection dynamics and host cell mechanisms in a natural amplifying host species, such as pigs, in vitro.

Keywords: Japanese encephalitis; arboviruses; cell culture; in vitro; infection; porcine

References

  1. Hum Vaccin Immunother. 2014;10(2):263-79 - PubMed
  2. J Gen Virol. 2014 Feb;95(Pt 2):373-383 - PubMed
  3. Prev Vet Med. 2018 Nov 15;160:1-9 - PubMed
  4. Results Immunol. 2013;3:26-32 - PubMed
  5. Am J Trop Med Hyg. 1988 Mar;38(2):420-7 - PubMed
  6. Ther Clin Risk Manag. 2015 Mar 19;11:435-48 - PubMed
  7. J Vet Sci. 2018 Jan 31;19(1):151-155 - PubMed
  8. J Microbiol. 2012 Aug;50(4):698-706 - PubMed
  9. Arch Virol. 2016 Mar;161(3):699-703 - PubMed
  10. Nat Commun. 2016 Feb 23;7:10832 - PubMed
  11. J Travel Med. 2018 May 1;25(suppl_1):S16-S26 - PubMed
  12. Nat Rev Neurol. 2018 Apr 26;14(5):298-313 - PubMed
  13. Pathogens. 2019 Jul 26;8(3): - PubMed
  14. Viruses. 2019 Oct 15;11(10): - PubMed
  15. J Neuroinflammation. 2017 Aug 14;14(1):158 - PubMed
  16. Elife. 2020 May 26;9: - PubMed
  17. Sci Rep. 2018 Aug 6;8(1):11784 - PubMed
  18. J Gen Virol. 1969 Jun;4(4):625-8 - PubMed
  19. Nat Commun. 2020 Oct 14;11(1):5178 - PubMed
  20. J Virol. 1997 Dec;71(12):9608-17 - PubMed
  21. PLoS Pathog. 2020 Apr 2;16(4):e1008260 - PubMed
  22. Vet Microbiol. 2017 Mar;201:85-92 - PubMed
  23. Jpn J Microbiol. 1976 Feb;20(1):1-9 - PubMed
  24. Vet Microbiol. 2005 May 20;107(3-4):205-14 - PubMed
  25. Sci Rep. 2018 May 21;8(1):7951 - PubMed
  26. Nat Rev Microbiol. 2004 Oct;2(10):789-801 - PubMed
  27. Pathol Biol (Paris). 1997 Feb;45(2):184-92 - PubMed
  28. Zoonoses Public Health. 2018 Nov;65(7):798-804 - PubMed
  29. J Gen Virol. 2016 Oct;97(10):2575-2591 - PubMed
  30. Emerg Infect Dis. 2009 Jan;15(1):1-7 - PubMed
  31. Front Immunol. 2018 Sep 26;9:2180 - PubMed
  32. Am J Trop Med Hyg. 2001 Oct;65(4):379-87 - PubMed
  33. PLoS Pathog. 2014 Jul 31;10(7):e1004290 - PubMed
  34. Vet Microbiol. 2019 Nov;238:108430 - PubMed
  35. J Virol. 2018 Nov 27;92(24): - PubMed
  36. Microb Pathog. 2019 Nov;136:103678 - PubMed
  37. Can J Vet Res. 1989 Oct;53(4):431-3 - PubMed
  38. Front Cell Infect Microbiol. 2019 Jan 28;9:5 - PubMed
  39. Front Vet Sci. 2020 Feb 07;7:48 - PubMed
  40. Annu Rev Entomol. 2009;54:17-35 - PubMed
  41. Transbound Emerg Dis. 2019 Jul;66(4):1558-1574 - PubMed
  42. PLoS Negl Trop Dis. 2017 Jan 13;11(1):e0005294 - PubMed
  43. Bull World Health Organ. 2011 Oct 1;89(10):766-74, 774A-774E - PubMed
  44. Am J Trop Med Hyg. 1992 Jul;47(1):61-9 - PubMed
  45. J Virol. 2015 Jun;89(12):6328-37 - PubMed
  46. Environ Int. 2015 Jun;79:17-24 - PubMed
  47. J Neuroinflammation. 2020 Oct 23;17(1):315 - PubMed
  48. N Engl J Med. 2017 Apr 13;376(15):1483-1485 - PubMed
  49. Sci Data. 2018 Feb 20;5:180017 - PubMed
  50. Arch Virol. 2012 Oct;157(10):1905-18 - PubMed
  51. NPJ Vaccines. 2020 Aug 5;5(1):73 - PubMed
  52. PLoS Negl Trop Dis. 2020 Dec 28;14(12):e0008986 - PubMed
  53. Vector Borne Zoonotic Dis. 2018 Sep;18(9):469-474 - PubMed
  54. Viral Immunol. 2013 Dec;26(6):366-77 - PubMed
  55. Clin Immunol. 2005 Mar;114(3):227-38 - PubMed
  56. J Neurovirol. 2014 Dec;20(6):539-60 - PubMed
  57. J Virol. 1999 Dec;73(12):10272-80 - PubMed
  58. Trans R Soc Trop Med Hyg. 2006 Dec;100(12):1135-45 - PubMed
  59. Virology. 2014 Apr;454-455:48-59 - PubMed
  60. J Comp Pathol. 2009 Aug-Oct;141(2-3):156-62 - PubMed
  61. PLoS Negl Trop Dis. 2007 Nov 07;1(2):e114 - PubMed
  62. J Gen Virol. 1990 Dec;71 ( Pt 12):2915-22 - PubMed

Publication Types

Grant support