Display options
Share it on

Nat Biomed Eng. 2021 Nov 22; doi: 10.1038/s41551-021-00812-y. Epub 2021 Nov 22.

Biomaterial-induced conversion of quiescent cardiomyocytes into pacemaker cells in rats.

Nature biomedical engineering

Yu-Feng Hu, An-Sheng Lee, Shih-Lin Chang, Shien-Fong Lin, Ching-Hui Weng, Hsin-Yu Lo, Pei-Chun Chou, Yung-Nan Tsai, Yen-Ling Sung, Chien-Chang Chen, Ruey-Bing Yang, Yuh-Charn Lin, Terry B J Kuo, Cheng-Han Wu, Jin-Dian Liu, Tze-Wen Chung, Shih-Ann Chen

Affiliations

  1. Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan. [email protected].
  2. Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. [email protected].
  3. Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan. [email protected].
  4. Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.
  5. Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
  6. Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
  7. Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
  8. Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.
  9. Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
  10. Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.
  11. Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan. [email protected].
  12. Center for Advanced Pharmaceutical Research and Drug Delivery, National Yang Ming Chiao Tung University, Taipei, Taiwan. [email protected].
  13. Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan.

PMID: 34811487 DOI: 10.1038/s41551-021-00812-y

Abstract

Pacemaker cells can be differentiated from stem cells or transdifferentiated from quiescent mature cardiac cells via genetic manipulation. Here we show that the exposure of rat quiescent ventricular cardiomyocytes to a silk-fibroin hydrogel activates the direct conversion of the quiescent cardiomyocytes to pacemaker cardiomyocytes by inducing the ectopic expression of the vascular endothelial cell-adhesion glycoprotein cadherin. The silk-fibroin-induced pacemaker cells exhibited functional and morphological features of genuine sinoatrial-node cardiomyocytes in vitro, and pacemaker cells generated via the injection of silk fibroin in the left ventricles of rats functioned as a surrogate in situ sinoatrial node. Biomaterials with suitable surface structure, mechanics and biochemistry could facilitate the scalable production of biological pacemakers for human use.

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

References

  1. Epstein, A. E. et al. 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. Circulation 127, e283–e352 (2013). - PubMed
  2. Cingolani, E., Goldhaber, J. I. & Marban, E. Next-generation pacemakers: from small devices to biological pacemakers. Nat. Rev. Cardiol. 15, 139–150 (2018). - PubMed
  3. Protze, S. I. et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat. Biotechnol. 35, 56–68 (2017). - PubMed
  4. Kapoor, N., Liang, W., Marban, E. & Cho, H. C. Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18. Nat. Biotechnol. 31, 54–62 (2013). - PubMed
  5. Hu, Y. F., Dawkins, J. F., Cho, H. C., Marban, E. & Cingolani, E. Biological pacemaker created by minimally invasive somatic reprogramming in pigs with complete heart block. Sci. Transl. Med. 6, 245ra94 (2014). - PubMed
  6. Munshi, N. V. & Olson, E. N. Translational medicine. Improving cardiac rhythm with a biological pacemaker. Science 345, 268–269 (2014). - PubMed
  7. Fox, I. J. et al. Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease. Science 345, 1247391 (2014). - PubMed
  8. Bongianino, R. & Priori, S. G. Gene therapy to treat cardiac arrhythmias. Nat. Rev. Cardiol. 12, 531–546 (2015). - PubMed
  9. Rosen, M. R. Gene therapy and biological pacing. N. Engl. J. Med. 371, 1158–1159 (2014). - PubMed
  10. Hou, P. et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341, 651–654 (2013). - PubMed
  11. Paoletti, C., Divieto, C. & Chiono, V. Impact of biomaterials on differentiation and reprogramming approaches for the generation of functional cardiomyocytes. Cells 7, 114 (2018). - PubMed
  12. Yang, M. C. et al. The cardiomyogenic differentiation of rat mesenchymal stem cells on silk fibroin-polysaccharide cardiac patches in vitro. Biomaterials 30, 3757–3765 (2009). - PubMed
  13. Chopra, A. et al. Reprogramming cardiomyocyte mechanosensing by crosstalk between integrins and hyaluronic acid receptors. J. Biomech. 45, 824–831 (2012). - PubMed
  14. Li, Y. et al. Tissue-engineered 3-dimensional (3D) microenvironment enhances the direct reprogramming of fibroblasts into cardiomyocytes by microRNAs. Sci. Rep. 6, 38815 (2016). - PubMed
  15. Smith, A. W. et al. Direct reprogramming of mouse fibroblasts to cardiomyocyte-like cells using Yamanaka factors on engineered poly(ethylene glycol) (PEG) hydrogels. Biomaterials 34, 6559–6571 (2013). - PubMed
  16. Shinagawa, Y., Satoh, H. & Noma, A. The sustained inward current and inward rectifier K+ current in pacemaker cells dissociated from rat sinoatrial node. J. Physiol. 523, 593–605 (2000). - PubMed
  17. DiFrancesco, D. The role of the funny current in pacemaker activity. Circ. Res. 106, 434–446 (2010). - PubMed
  18. Maltsev, V. A. & Lakatta, E. G. Dynamic interactions of an intracellular Ca - PubMed
  19. Lakatta, E. G., Maltsev, V. A. & Vinogradova, T. M. A coupled SYSTEM of intracellular Ca - PubMed
  20. Vinogradova, T. M. et al. High basal protein kinase A-dependent phosphorylation drives rhythmic internal Ca - PubMed
  21. Boyett, M. R. et al. Sophisticated architecture is required for the sinoatrial node to perform its normal pacemaker function. J. Cardiovasc. Electrophysiol. 14, 104–106 (2003). - PubMed
  22. ten Velde, I. et al. Spatial distribution of connexin43, the major cardiac gap junction protein, visualizes the cellular network for impulse propagation from sinoatrial node to atrium. Circ. Res. 76, 802–811 (1995). - PubMed
  23. Verheijck, E. E. et al. Electrophysiological features of the mouse sinoatrial node in relation to connexin distribution. Cardiovasc. Res. 52, 40–50 (2001). - PubMed
  24. Wang, W. E. et al. Dedifferentiation, proliferation, and redifferentiation of adult mammalian cardiomyocytes after ischemic injury. Circulation 136, 834–848 (2017). - PubMed
  25. D’Uva, G. et al. ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat. Cell Biol. 17, 627–638 (2015). - PubMed
  26. Jopling, C. et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464, 606–609 (2010). - PubMed
  27. Chen, X. et al. Single-cell transcriptome and epigenomic reprogramming of cardiomyocyte-derived cardiac progenitor cells. Sci. Data 3, 160079 (2016). - PubMed
  28. Guo, M., Breslin, J. W., Wu, M. H., Gottardi, C. J. & Yuan, S. Y. VE-cadherin and beta-catenin binding dynamics during histamine-induced endothelial hyperpermeability. Am. J. Physiol. Cell Physiol. 294, C977–C984 (2008). - PubMed
  29. Lagendijk, A. K. et al. Live imaging molecular changes in junctional tension upon VE-cadherin in zebrafish. Nat. Commun. 8, 1402 (2017). - PubMed
  30. Gottardi, C. J. & Gumbiner, B. M. Distinct molecular forms of beta-catenin are targeted to adhesive or transcriptional complexes. J. Cell Biol. 167, 339–349 (2004). - PubMed
  31. Kwon, C. et al. A regulatory pathway involving Notch1/beta-catenin/Isl1 determines cardiac progenitor cell fate. Nat. Cell Biol. 11, 951–957 (2009). - PubMed
  32. Liu, C. et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108, 837–847 (2002). - PubMed
  33. David, M. D. et al. Signalling by neurotrophins and hepatocyte growth factor regulates axon morphogenesis by differential beta-catenin phosphorylation. J. Cell Sci. 121, 2718–2730 (2008). - PubMed
  34. Lin, L. et al. Beta-catenin directly regulates Islet1 expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis. Proc. Natl Acad. Sci. USA 104, 9313–9318 (2007). - PubMed
  35. Norden, J., Greulich, F., Rudat, C., Taketo, M. M. & Kispert, A. Wnt/beta-catenin signaling maintains the mesenchymal precursor pool for murine sinus horn formation. Circ. Res. 109, e42–e50 (2011). - PubMed
  36. Schuijers, J., Mokry, M., Hatzis, P., Cuppen, E. & Clevers, H. Wnt-induced transcriptional activation is exclusively mediated by TCF/LEF. EMBO J. 33, 146–156 (2014). - PubMed
  37. Watanabe, K. et al. Integrative ChIP-seq/microarray analysis identifies a CTNNB1 target signature enriched in intestinal stem cells and colon cancer. PLoS ONE 9, e92317 (2014). - PubMed
  38. Bakker, M. L. et al. T-box transcription factor TBX3 reprogrammes mature cardiac myocytes into pacemaker-like cells. Cardiovasc. Res. 94, 439–449 (2012). - PubMed
  39. Le Bras, A. et al. HIF-2alpha specifically activates the VE-cadherin promoter independently of hypoxia and in synergy with Ets-1 through two essential ETS-binding sites. Oncogene 26, 7480–7489 (2007). - PubMed
  40. Costa, G. et al. SOX7 regulates the expression of VE-cadherin in the haemogenic endothelium at the onset of haematopoietic development. Development 139, 1587–1598 (2012). - PubMed
  41. Prandini, M. H. et al. The human VE-cadherin promoter is subjected to organ-specific regulation and is activated in tumour angiogenesis. Oncogene 24, 2992–3001 (2005). - PubMed
  42. Opthof, T. et al. Functional and morphological organization of the guinea-pig sinoatrial node compared with the rabbit sinoatrial node. J. Mol. Cell. Cardiol. 17, 549–564 (1985). - PubMed
  43. Opthof, T., de Jonge, B., Masson-Pevet, M., Jongsma, H. J. & Bouman, L. N. Functional and morphological organization of the cat sinoatrial node. J. Mol. Cell. Cardiol. 18, 1015–1031 (1986). - PubMed
  44. Bleeker, W. K., Mackaay, A. J., Masson-Pevet, M., Bouman, L. N. & Becker, A. E. Functional and morphological organization of the rabbit sinus node. Circ. Res. 46, 11–22 (1980). - PubMed
  45. Sahara, M., Santoro, F. & Chien, K. R. Programming and reprogramming a human heart cell. EMBO J. 34, 710–738 (2015). - PubMed
  46. Lin, B. et al. Modulating cell fate as a therapeutic strategy. Cell Stem Cell 23, 329–341 (2018). - PubMed
  47. Kong, Y. P. et al. A systems mechanobiology model to predict cardiac reprogramming outcomes on different biomaterials. Biomaterials 181, 280–292 (2018). - PubMed
  48. Wu, X. et al. Cardiomyocyte contractile status is associated with differences in fibronectin and integrin interactions. Am. J. Physiol. Heart Circ. Physiol. 298, H2071–H2081 (2010). - PubMed
  49. Brancaccio, M. et al. Integrin signalling: the tug-of-war in heart hypertrophy. Cardiovasc. Res. 70, 422–433 (2006). - PubMed
  50. Gluck, J. M. et al. Biochemical and biomechanical properties of the pacemaking sinoatrial node extracellular matrix are distinct from contractile left ventricular matrix. PLoS ONE 12, e0185125 (2017). - PubMed
  51. Happe, C. L. & Engler, A. J. Mechanical forces reshape differentiation cues that guide cardiomyogenesis. Circ. Res. 118, 296–310 (2016). - PubMed
  52. Christoffels, V. M., Smits, G. J., Kispert, A. & Moorman, A. F. Development of the pacemaker tissues of the heart. Circ. Res. 106, 240–254 (2010). - PubMed
  53. Long, J., Kim, H., Kim, D., Lee, J. B. & Kim, D. H. A biomaterial approach to cell reprogramming and differentiation. J. Mater. Chem. B 5, 2375–2379 (2017). - PubMed
  54. Kundu, B., Rajkhowa, R., Kundu, S. C. & Wang, X. Silk fibroin biomaterials for tissue regenerations. Adv. Drug Deliv. Rev. 65, 457–470 (2013). - PubMed
  55. Kizana, E. et al. Gene transfer of connexin43 mutants attenuates coupling in cardiomyocytes: novel basis for modulation of cardiac conduction by gene therapy. Circ. Res. 100, 1597–1604 (2007). - PubMed
  56. Chung, T. W., Lo, H. Y., Chou, T. H., Chen, J. H. & Wang, S. S. Promoting cardiomyogenesis of hBMSC with a forming self-assembly hBMSC microtissues/HA-GRGD/SF-PCL cardiac patch is mediated by the synergistic functions of HA-GRGD. Macromol. Biosci. 17, 1600173 (2017). - PubMed
  57. Lo, H. Y., Huang, A. L., Lee, P. C., Chung, T. W. & Wang, S. S. Morphological transformation of hBMSC from 2D monolayer to 3D microtissue on low-crystallinity silk-fibroin-PCL patch with promotion of cardiomyogenesis. J. Tissue Eng. Regen. Med. 12, e1852–e1864 (2018). - PubMed
  58. Partlow, B. P. et al. Highly tunable elastomeric silk biomaterials. Adv. Funct. Mater. 24, 4615–4624 (2014). - PubMed
  59. Bryan, N., Rhodes, N. P. & Hunt, J. A. Derivation and performance of an entirely autologous injectable hydrogel delivery system for cell-based therapies. Biomaterials 30, 180–188 (2009). - PubMed
  60. Weng, C. H. et al. Pleiotropic effects of myocardial MMP-9 inhibition to prevent ventricular arrhythmia. Sci. Rep. 6, 38894 (2016). - PubMed
  61. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012). - PubMed
  62. Motayagheni, N. Modified Langendorff technique for mouse heart cannulation: improved heart quality and decreased risk of ischemia. MethodsX 4, 508–512 (2017). - PubMed
  63. Sung, Y. L. et al. Effects of long-term exercise on arrhythmogenesis in aged hypertensive rats. Comput. Biol. Med. 102, 390–395 (2018). - PubMed
  64. Chen, C. W., Kuo, T. B., Chen, C. Y. & Yang, C. C. Reduced capacity of autonomic and baroreflex control associated with sleep pattern in spontaneously hypertensive rats with a nondipping profile. J. Hypertens. 35, 558–570 (2017). - PubMed

Publication Types

Grant support