Display options
Share it on

J Adv Biotechnol Bioeng. 2015 Mar;3(1):1-6. doi: 10.12970/2311-1755.2015.03.01.1.

A Deterministic Model of Human Motion Based on Algebraic Techniques and a Sensor Network to Simulate Shoulder Kinematics.

Journal of advanced biotechnology and bioengineering

Kimberly D Kendricks, Anthony Taylor, Anum Barki, Ronald F Tuttle, Sean S Kohles

Affiliations

  1. College of Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA.
  2. Department of Mathematics and Computer Science, Central State University, Wilberforce, OH 45384, USA.
  3. Department of Engineering Physics, Air Force Institute of Technology, Wright Patterson Air Force Base, Ohio 45433, USA.
  4. Division of Biomaterials & Biomechanics, Department of Restorative Dentistry, Oregon Health & Science University, Portland, Oregon 97201, USA.

PMID: 34778446 PMCID: PMC8589320 DOI: 10.12970/2311-1755.2015.03.01.1

Abstract

Limiting the quantitative characterization of ambulatory mobility to only the two-dimensional sagittal plane through the investigation of key kinematic parameters, may still inform scientists and bioengineers of critical elements of joint locomotion. This paper presents the initial validation of a deterministic biomechanical gait model that was derived from an inverse kinematic analysis of three-dimensional upper extremity movement. Algebraic methods were applied to generate shoulder flexion and extension angles during a single gait cycle during normal walking. The direct kinematic measurements from a motion capture system were analyzed and compared to the predicted measurements from the algebraic model for eight healthy, human subjects. The predicted results over all subjects varied from the actual joint angle measurements with a nominal amount of mean error (23%), while correlations were quite strong (mean R

Keywords: Gait model; inverse kinematics; motion analysis; shoulder biomechanics

References

  1. J Biomech. 2000 Jul;33(7):853-61 - PubMed
  2. IEEE Trans Biomed Eng. 2007 Nov;54(11):1927-39 - PubMed
  3. J Neurophysiol. 1994 Dec;72(6):2892-902 - PubMed
  4. J Exp Biol. 2001 Jan;204(Pt 1):47-58 - PubMed
  5. J Biomech. 1999 Jun;32(6):585-91 - PubMed
  6. Ergonomics. 1998 Oct;41(10):1453-61 - PubMed
  7. Clin Biomech (Bristol, Avon). 1996 Mar;11(2):90-100 - PubMed
  8. J Biomech. 1999 Feb;32(2):129-34 - PubMed
  9. Proc Biol Sci. 2009 Oct 22;276(1673):3679-88 - PubMed
  10. Gait Posture. 2005 Feb;21(2):226-37 - PubMed
  11. Gait Posture. 2005 Feb;21(2):197-211 - PubMed
  12. Am J Sports Med. 2008 Mar;36(3):523-7 - PubMed
  13. J Biomech. 2008 Dec 5;41(16):3390-8 - PubMed
  14. J Biomech. 2005 May;38(5):981-992 - PubMed
  15. J Biomech. 1995 Apr;28(4):377-85 - PubMed
  16. J Biomech. 2008 Aug 28;41(12):2750-9 - PubMed
  17. Gait Posture. 2005 Feb;21(2):212-25 - PubMed
  18. J Biomech. 1999 May;32(5):453-60 - PubMed
  19. Proc Inst Mech Eng H. 2007 Apr;221(3):237-49 - PubMed
  20. Spinal Cord. 1998 Jun;36(6):418-26 - PubMed
  21. J Biomech. 1998 Nov;31(11):977-84 - PubMed
  22. Gait Posture. 2002 Aug;16(1):1-14 - PubMed
  23. J Biomech. 2000 Nov;33(11):1479-87 - PubMed
  24. Exp Brain Res. 1992;90(2):404-14 - PubMed
  25. J Biomech. 2006;39(8):1531-6 - PubMed

Publication Types

Grant support