Display options
Share it on

Pharmaceutics. 2021 Nov 03;13(11). doi: 10.3390/pharmaceutics13111851.

Aerosol Delivery of Surfactant Liposomes for Management of Pulmonary Fibrosis: An Approach Supporting Pulmonary Mechanics.

Pharmaceutics

Sabna Kotta, Hibah Mubarak Aldawsari, Shaimaa M Badr-Eldin, Lenah S Binmahfouz, Rana Bakur Bakhaidar, Nagaraja Sreeharsha, Anroop B Nair, Chandramouli Ramnarayanan

Affiliations

  1. Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
  2. Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
  3. Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
  4. Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
  5. Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India.
  6. Department of Pharmaceutical Chemistry, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India.
  7. Global Technical Enablement JMP Division, SAS India Pvt. Ltd., Lavelle Road, Bengaluru 560025, India.

PMID: 34834265 PMCID: PMC8625129 DOI: 10.3390/pharmaceutics13111851

Abstract

Excessive architectural re-modeling of tissues in pulmonary fibrosis due to proliferation of myofibroblasts and deposition of extracellular matrix adversely affects the elasticity of the alveoli and lung function. Progressively destructive chronic inflammatory disease, therefore, necessitates safe and effective non-invasive airway delivery that can reach deep alveoli, restore the surfactant function and reduce oxidative stress. We designed an endogenous surfactant-based liposomal delivery system of naringin to be delivered as an aerosol that supports pulmonary mechanics for the management of pulmonary fibrosis. Phosphatidylcholine-based liposomes showed 91.5 ± 2.4% encapsulation of naringin, with a mean size of 171.4 ± 5.8 nm and zeta potential of -15.5 ± 1.3 mV. Liposomes with the unilamellar structure were found to be spherical and homogeneous in shape using electron microscope imaging. The formulation showed surface tension of 32.6 ± 0.96 mN/m and was able to maintain airway patency of 97 ± 2.5% for a 120 s test period ensuring the effective opening of lung capillaries and deep lung delivery. In vitro lung deposition utilizing Twin Stage Impinger showed 79 ± 1.5% deposition in lower airways, and Anderson Cascade Impactor deposition revealed a mass median aerodynamic diameter of 2.35 ± 1.02 μm for the aerosolized formulation. In vivo efficacy of the developed formulation was analyzed in bleomycin-induced lung fibrosis model in rats after administration by the inhalation route. Lactate dehydrogenase activity, total protein content, and inflammatory cell infiltration in broncho-alveolar lavage fluid were substantially reduced by liposomal naringin. Oxidative stress was minimized as observed from levels of antioxidant enzymes. Masson's Trichrome staining of lung tissue revealed significant amelioration of histological changes and lesser deposition of collagen. Overall results indicated the therapeutic potential of the developed non-invasive aerosol formulation for the effective management of pulmonary fibrosis.

Keywords: aerosol; bleomycin; liposomes; naringin; pulmonary fibrosis

References

  1. Mol Med Rep. 2014 Aug;10(2):1157-63 - PubMed
  2. Pharmaceutics. 2021 Jun 18;13(6): - PubMed
  3. Sci Rep. 2018 Nov 15;8(1):16860 - PubMed
  4. Int Immunopharmacol. 2020 Dec;89(Pt A):107011 - PubMed
  5. ACS Biomater Sci Eng. 2021 Jan 11;7(1):144-156 - PubMed
  6. Int J Nanomedicine. 2021 Mar 25;16:2405-2417 - PubMed
  7. Int J Exp Pathol. 2007 Apr;88(2):103-10 - PubMed
  8. Indian J Pharm Sci. 2012 Nov;74(6):521-6 - PubMed
  9. Sci Rep. 2014 Nov 18;4:7085 - PubMed
  10. Am J Respir Cell Mol Biol. 2015 Feb;52(2):232-43 - PubMed
  11. J Nanobiotechnology. 2021 Jan 11;19(1):19 - PubMed
  12. Eur Respir J. 1996 Aug;9(8):1736-42 - PubMed
  13. Front Med (Lausanne). 2021 Feb 17;8:640020 - PubMed
  14. J Aerosol Med. 2000 Winter;13(4):303-14 - PubMed
  15. Pharmaceutics. 2020 Sep 20;12(9): - PubMed
  16. Int J Pharm. 2018 Dec 1;552(1-2):241-250 - PubMed
  17. Cell Tissue Res. 2017 Mar;367(3):607-626 - PubMed
  18. Pharmaceutics. 2021 Aug 06;13(8): - PubMed
  19. Curr Pharm Des. 2021;27(43):4404-4415 - PubMed
  20. Nanomaterials (Basel). 2020 Jun 27;10(7): - PubMed
  21. J Liposome Res. 2017 Dec;27(4):283-292 - PubMed
  22. J Clin Med. 2016 Sep 02;5(9): - PubMed
  23. Pulm Med. 2016;2016:7601393 - PubMed
  24. F1000Res. 2017 Nov 27;6:2052 - PubMed
  25. Drug Dev Res. 2018 Dec;79(8):373-382 - PubMed
  26. Pharmaceutics. 2021 Aug 27;13(9): - PubMed
  27. Comp Biochem Physiol A Mol Integr Physiol. 2001 May;129(1):195-207 - PubMed
  28. Mol Pharm. 2020 May 4;17(5):1596-1607 - PubMed
  29. Lab Invest. 2019 Jun;99(6):830-852 - PubMed
  30. J Pharm Pharmacol. 1987 Dec;39(12):966-72 - PubMed
  31. Pharmaceutics. 2019 Nov 13;11(11): - PubMed
  32. Annu Rev Pathol. 2015;10:371-93 - PubMed
  33. Thorax. 2013 Sep;68(9):818-25 - PubMed
  34. Med Princ Pract. 2016;25 Suppl 2:60-72 - PubMed
  35. Oxid Med Cell Longev. 2018 Feb 13;2018:5260976 - PubMed
  36. Eur J Pharm Biopharm. 2013 Jun;84(2):335-44 - PubMed
  37. Colloids Surf B Biointerfaces. 2019 Feb 1;174:553-562 - PubMed
  38. Asian J Pharm Sci. 2018 Jan;13(1):91-100 - PubMed
  39. Indian J Exp Biol. 2013 Jan;51(1):5-22 - PubMed
  40. Antioxid Redox Signal. 2008 Apr;10(4):727-38 - PubMed
  41. Food Chem Toxicol. 2013 Aug;58:133-40 - PubMed
  42. Pharmaceutics. 2020 Feb 28;12(3): - PubMed

Publication Types

Grant support