Display options
Share it on

Proc Biol Sci. 2021 Nov 24;288(1963):20212079. doi: 10.1098/rspb.2021.2079. Epub 2021 Nov 24.

Growth of Neanderthal infants from Krapina (120-130 ka), Croatia.

Proceedings. Biological sciences

Patrick Mahoney, Gina McFarlane, B Holly Smith, Justyna J Miszkiewicz, Paola Cerrito, Helen Liversidge, Lucia Mancini, Diego Dreossi, Alessio Veneziano, Federico Bernardini, Emanuela Cristiani, Alison Behie, Alfredo Coppa, Luca Bondioli, David W Frayer, Davorka Radovčić, Alessia Nava

Affiliations

  1. Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK.
  2. Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA.
  3. Museum of Anthropological Archaeology. The University of Michigan, Ann Arbor, MI, USA.
  4. School of Archaeology and Anthropology, Australian National University, Canberra, ACT 2601, Australia.
  5. School of Social Science, The University of Queensland, St Lucia 4072, Australia.
  6. Department of Anthropology, New York University, New York, NY, USA.
  7. Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA.
  8. Institute of Dentistry, Queen Mary, University of London, Turner Street, London.
  9. Elettra Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, 34149, Italy.
  10. Department of Archaeology, University of Cambridge, Cambridge, UK.
  11. Department of Humanistic Studies, Università Ca' Foscari Venezia, Italy.
  12. Multidisciplinary Laboratory, Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.
  13. Diet and ANcient TEchnology Laboratory, Department of Maxillo-Facial Sciences, Sapienza University of Rome, Rome, 00185, Italy.
  14. Dipartimento di Biologia Ambientale, Università di Roma 'La Sapienza', Rome, 00185, Italy.
  15. Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.
  16. Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
  17. Servizio di Bioarcheologia, Museo delle Civiltà, Rome, 00144, Italy.
  18. Dipartimento di Beni Culturali, Università di Padova, Padua, 35139, Italy.
  19. Dipartimento di Beni Culturali, Università di Bologna, Ravenna, 48100, Italy.
  20. Department of Anthropology, University of Kansas, 622 Fraser Hall, Lawrence, KS, USA.
  21. Department of Geology and Paleontology, Croatian Natural History Museum, Zagreb, Croatia.

PMID: 34814754 PMCID: PMC8611323 DOI: 10.1098/rspb.2021.2079

Abstract

Modern humans have a slow and extended period of childhood growth, but to what extent this ontogenetic pathway was present in Neanderthals is debated. Dental development, linked to the duration of somatic growth across modern primates, is the main source for information about growth and development in a variety of fossil primates, including humans. Studies of Neanderthal permanent teeth report a pace of development either similar to recent humans or relatively accelerated. Neanderthal milk teeth, which form and emerge before permanent teeth, provide an opportunity to determine which pattern was present at birth. Here we present a comparative study of the prenatal and early postnatal growth of five milk teeth from three Neanderthals (120 000-130 000 years ago) using virtual histology. Results reveal regions of their milk teeth formed quickly before birth and over a relatively short period of time after birth. Tooth emergence commenced towards the earliest end of the eruption schedules displayed by extant human children. Advanced dental development is consistent with expectations for Neanderthal infant feeding.

Keywords: dental development; evolutionary biology; fossil hominins; human evolution; virtual histology

References

  1. Arch Oral Biol. 2020 Jun;114:104719 - PubMed
  2. J Am Coll Nutr. 2002 Apr;21(2):88-96 - PubMed
  3. Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1338-42 - PubMed
  4. Early Hum Dev. 2019 Oct;137:104821 - PubMed
  5. Proc Biol Sci. 2006 Nov 22;273(1603):2799-808 - PubMed
  6. Int J Orofacial Myology. 2000 Nov;26:24-32 - PubMed
  7. Nature. 2001 Dec 6;414(6864):628-31 - PubMed
  8. Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):20923-8 - PubMed
  9. Evolution. 1989 May;43(3):683-688 - PubMed
  10. Nature. 2006 Dec 7;444(7120):748-51 - PubMed
  11. J Hum Evol. 2008 Jul;55(1):131-47 - PubMed
  12. Front Oral Biol. 2009;13:121-127 - PubMed
  13. Nature. 2020 Apr;580(7802):235-238 - PubMed
  14. J Hum Evol. 2014 Nov;76:83-91 - PubMed
  15. Proc Natl Acad Sci U S A. 2020 Nov 17;117(46):28719-28726 - PubMed
  16. Nature. 2004 Apr 29;428(6986):936-9 - PubMed
  17. Proc Natl Acad Sci U S A. 2014 Sep 9;111(36):13010-5 - PubMed
  18. Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13764-8 - PubMed
  19. Proc Biol Sci. 2007 May 7;274(1614):1125-32 - PubMed
  20. Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20220-5 - PubMed
  21. Nature. 2002 Sep 5;419(6902):33-4 - PubMed
  22. Am J Phys Anthropol. 1978 Jan;50(1):67-114 - PubMed
  23. Nature. 1995 Nov 2;378(6552):24 - PubMed
  24. Am J Phys Anthropol. 2015 Mar;156(3):482-8 - PubMed
  25. Science. 2017 Sep 22;357(6357):1282-1287 - PubMed
  26. Dev Disabil Res Rev. 2008;14(2):105-17 - PubMed
  27. Am J Phys Anthropol. 2020 Dec;173(4):768-775 - PubMed
  28. Br J Nutr. 2014 Feb;111(3):403-14 - PubMed
  29. Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14197-202 - PubMed
  30. J Anthropol Sci. 2015 Jul 20;93:21-42 - PubMed
  31. Sci Adv. 2020 Oct 7;6(41): - PubMed
  32. Sci Rep. 2021 Jan 12;11(1):522 - PubMed
  33. J Hum Evol. 2012 Feb;62(2):300-13 - PubMed
  34. Am J Phys Anthropol. 2012 Apr;147(4):637-51 - PubMed
  35. J Hum Evol. 2019 Apr;129:46-53 - PubMed
  36. J Hum Evol. 2011 Sep;61(3):320-6 - PubMed
  37. Am J Phys Anthropol. 2011 Feb;144(2):204-14 - PubMed
  38. Am J Phys Anthropol. 2015 Mar;156(3):407-21 - PubMed
  39. PLoS One. 2017 Jul 12;12(7):e0180104 - PubMed

Publication Types