Display options
Share it on

Cell Mol Life Sci. 2021 Dec;78(24):8283-8300. doi: 10.1007/s00018-021-04017-z. Epub 2021 Nov 15.

Noncanonical ER-Golgi trafficking and autophagy of endogenous procollagen in osteoblasts.

Cellular and molecular life sciences : CMLS

Laura Gorrell, Shakib Omari, Elena Makareeva, Sergey Leikin

Affiliations

  1. Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, 20892, USA.
  2. Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
  3. Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.
  4. Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, 20892, USA. [email protected].

PMID: 34779895 DOI: 10.1007/s00018-021-04017-z

Abstract

Secretion and quality control of large extracellular matrix proteins remain poorly understood and debated, particularly transport intermediates delivering folded proteins from the ER to Golgi and misfolded ones to lysosomes. Discrepancies between different studies are related to utilization of exogenous cargo, off-target effects of experimental conditions and cell manipulation, and identification of transport intermediates without tracing their origin and destination. To address these issues, here we imaged secretory and degradative trafficking of type I procollagen in live MC3T3 osteoblasts by replacing a region encoding N-propeptide in endogenous Col1a2 gDNA with GFP cDNA. We selected clones that produced the resulting fluorescent procollagen yet had normal expression of key osteoblast and ER/cell stress genes, normal procollagen folding, and normal deposition and mineralization of extracellular matrix. Live-cell imaging of these clones revealed ARF1-dependent transport intermediates, which had no COPII coat and delivered procollagen from ER exit sites (ERESs) to Golgi without stopping at ER-Golgi intermediate compartment (ERGIC). It also confirmed ERES microautophagy, i.e., lysosomes engulfing ERESs containing misfolded procollagen. Beyond validating these trafficking models for endogenous procollagen, we uncovered a probable cause of noncanonical cell stress response to procollagen misfolding. Recognized and retained only at ERESs, misfolded procollagen does not directly activate the canonical UPR, yet it disrupts the ER lumen by blocking normal secretory export from the ER.

© 2021. This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.

Keywords: Autophagy; Collagen; Live-cell imaging; Quality control; Trafficking

References

  1. Prockop DJ, Kivirikko KI (1995) Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 64:403–434. https://doi.org/10.1146/annurev.bi.64.070195.002155 - PubMed
  2. Canty EG, Kadler KE (2005) Procollagen trafficking, processing and fibrillogenesis. J Cell Sci 118:1341–1353. https://doi.org/10.1242/jcs.01731 - PubMed
  3. Ishikawa Y, Bachinger HP (2013) A molecular ensemble in the rER for procollagen maturation. Biochim Biophys Acta 1833:2479–2491. https://doi.org/10.1016/j.bbamcr.2013.04.008 - PubMed
  4. Koide T, Nagata K (2005) Collagen biosynthesis. In: Brinckmann J, Notbohm H, Muller PK (eds) Collagen: primer in structure, processing and assembly. Topics in current chemistry. Springer, Heidelberg, pp 85–114. https://doi.org/10.1007/b103820 - PubMed
  5. Makareeva E, Aviles NA, Leikin S (2011) Chaperoning osteogenesis: new protein-folding disease paradigms. Trends Cell Biol 21:168–176. https://doi.org/10.1016/j.tcb.2010.11.007 - PubMed
  6. Barile FA, Guzowski DE, Ripley C, Siddiqi ZA, Bienkowski RS (1990) Ammonium chloride inhibits basal degradation of newly synthesized collagen in human fetal lung fibroblasts. Arch Biochem Biophys 276:125–131. https://doi.org/10.1016/0003-9861(90)90018-t - PubMed
  7. Berg RA, Schwartz ML, Crystal RG (1980) Regulation of the production of secretory proteins: intracellular degradation of newly synthesized “defective” collagen. Proc Natl Acad Sci USA 77:4746–4750. https://doi.org/10.1073/pnas.77.8.4746 - PubMed
  8. Bateman JF, Boot-Handford RP, Lamande SR (2009) Genetic diseases of connective tissues: cellular and extracellular effects of ECM mutations. Nat Rev Genet 10:173–183. https://doi.org/10.1038/nrg2520 - PubMed
  9. Forlino A, Marini JC (2016) Osteogenesis imperfecta. Lancet 387:1657–1671. https://doi.org/10.1016/S0140-6736(15)00728-X - PubMed
  10. Omari S, Makareeva E, Leikin S (2021) Procollagen trafficking and its implications in OI. In: Ruggiero F (ed) Collagen superfamily and collagenopathies. Springer, Heidelberg (In press) - PubMed
  11. Yin X, Zhou C, Li J, Liu R, Shi B, Yuan Q, Zou S (2019) Autophagy in bone homeostasis and the onset of osteoporosis. Bone Res 7:28. https://doi.org/10.1038/s41413-019-0058-7 - PubMed
  12. Venditti R, Wilson C, De Matteis MA (2014) Exiting the ER: what we know and what we don’t. Trends Cell Biol 24:9–18. https://doi.org/10.1016/j.tcb.2013.08.005 - PubMed
  13. Zanetti G, Pahuja KB, Studer S, Shim S, Schekman R (2011) COPII and the regulation of protein sorting in mammals. Nat Cell Biol 14:20–28. https://doi.org/10.1038/ncb2390 - PubMed
  14. Gorur A, Yuan L, Kenny SJ, Baba S, Xu K, Schekman R (2017) COPII-coated membranes function as transport carriers of intracellular procollagen I. J Cell Biol 216:1745–1759. https://doi.org/10.1083/jcb.201702135 - PubMed
  15. Jin L, Pahuja KB, Wickliffe KE, Gorur A, Baumgartel C, Schekman R, Rape M (2012) Ubiquitin-dependent regulation of COPII coat size and function. Nature 482:495–500. https://doi.org/10.1038/nature10822 - PubMed
  16. Yuan L, Kenny SJ, Hemmati J, Xu K, Schekman R (2018) TANGO1 and SEC12 are copackaged with procollagen I to facilitate the generation of large COPII carriers. Proc Natl Acad Sci USA 115:E12255–E12264. https://doi.org/10.1073/pnas.1814810115 - PubMed
  17. Nogueira C, Erlmann P, Villeneuve J, Santos AJ, Martinez-Alonso E, Martinez-Menarguez JA, Malhotra V (2014) SLY1 and syntaxin 18 specify a distinct pathway for procollagen VII export from the endoplasmic reticulum. Elife 3:e02784. https://doi.org/10.7554/eLife.02784 - PubMed
  18. McCaughey J, Stevenson NL, Cross S, Stephens DJ (2019) ER-to-Golgi trafficking of procollagen in the absence of large carriers. J Cell Biol 218:929–948. https://doi.org/10.1083/jcb.201806035 - PubMed
  19. Omari S, Makareeva E, Gorrell L, Jarnik M, Lippincott-Schwartz J, Leikin S (2020) Mechanisms of procollagen and HSP47 sorting during ER-to-Golgi trafficking. Matrix Biol 93:79–94. https://doi.org/10.1016/j.matbio.2020.06.002 - PubMed
  20. Fitzgerald J, Lamande SR, Bateman JF (1999) Proteasomal degradation of unassembled mutant type I collagen pro-alpha1(I) chains. J Biol Chem 274:27392–27398. https://doi.org/10.1074/jbc.274.39.27392 - PubMed
  21. Ishida Y, Yamamoto A, Kitamura A, Lamande SR, Yoshimori T, Bateman JF, Kubota H, Nagata K (2009) Autophagic elimination of misfolded procollagen aggregates in the endoplasmic reticulum as a means of cell protection. Mol Biol Cell 20:2744–2754. https://doi.org/10.1091/mbc.E08-11-1092 - PubMed
  22. Lamande SR, Chessler SD, Golub SB, Byers PH, Chan D, Cole WG, Sillence DO, Bateman JF (1995) Endoplasmic reticulum-mediated quality control of type I collagen production by cells from osteogenesis imperfecta patients with mutations in the pro alpha 1 (I) chain carboxyl-terminal propeptide which impair subunit assembly. J Biol Chem 270:8642–8649. https://doi.org/10.1074/jbc.270.15.8642 - PubMed
  23. Doan ND, Hosseini AS, Bikovtseva AA, Huang MS, DiChiara AS, Papa LJ 3rd, Koller A, Shoulders MD (2020) Elucidation of proteostasis defects caused by osteogenesis imperfecta mutations in the collagen-alpha2(I) C-propeptide domain. J Biol Chem 295:9959–9973. https://doi.org/10.1074/jbc.RA120.014071 - PubMed
  24. Ishida Y, Nagata K (2009) Autophagy eliminates a specific species of misfolded procollagen and plays a protective role in cell survival against ER stress. Autophagy 5:1217–1219. https://doi.org/10.4161/auto.5.8.10168 - PubMed
  25. Forrester A, De Leonibus C, Grumati P, Fasana E, Piemontese M, Staiano L et al (2019) A selective ER-phagy exerts procollagen quality control via a Calnexin-FAM134B complex. EMBO J. https://doi.org/10.15252/embj.201899847 - PubMed
  26. Fregno I, Fasana E, Solda T, Galli C, Molinari M (2021) N-glycan processing selects ERAD-resistant misfolded proteins for ER-to-lysosome-associated degradation. EMBO J. https://doi.org/10.15252/embj.2020107240 - PubMed
  27. Reggio A, Buonomo V, Berkane R, Bhaskara RM, Tellechea M, Peluso I et al (2021) Role of FAM134 paralogues in endoplasmic reticulum remodeling, ER-phagy, and Collagen quality control. EMBO Rep. https://doi.org/10.15252/embr.202052289 - PubMed
  28. Omari S, Makareeva E, Roberts-Pilgrim A, Mirigian L, Jarnik M, Ott C, Lippincott-Schwartz J, Leikin S (2018) Noncanonical autophagy at ER exit sites regulates procollagen turnover. Proc Natl Acad Sci USA 115:E10099–E10108. https://doi.org/10.1073/pnas.1814552115 - PubMed
  29. Fregno I, Molinari M (2019) Proteasomal and lysosomal clearance of faulty secretory proteins: ER-associated degradation (ERAD) and ER-to-lysosome-associated degradation (ERLAD) pathways. Crit Rev Biochem Mol Biol 54:153–163. https://doi.org/10.1080/10409238.2019.1610351 - PubMed
  30. Lippincott-Schwartz J, Roberts TH, Hirschberg K (2000) Secretory protein trafficking and organelle dynamics in living cells. Annu Rev Cell Dev Biol 16:557–589. https://doi.org/10.1146/annurev.cellbio.16.1.557 - PubMed
  31. Song F, Stieger K (2017) Optimizing the DNA donor template for homology-directed repair of double-strand breaks. Mol Ther Nucl Acids 7:53–60. https://doi.org/10.1016/j.omtn.2017.02.006 - PubMed
  32. Makareeva E, Mertz EL, Kuznetsova NV, Sutter MB, DeRidder AM, Cabral WA, Barnes AM, McBride DJ, Marini JC, Leikin S (2008) Structural heterogeneity of type I collagen triple helix and its role in osteogenesis imperfecta. J Biol Chem 283:4787–4798. https://doi.org/10.1074/jbc.M705773200 - PubMed
  33. Daley E, Streeten EA, Sorkin JD, Kuznetsova N, Shapses SA, Carleton SM, Shuldiner AR, Marini JC, Phillips CL, Goldstein SA, Leikin S, McBride DJ Jr (2010) Variable bone fragility associated with an Amish COL1A2 variant and a knock-in mouse model. J Bone Miner Res 25:247–261. https://doi.org/10.1359/jbmr.090720 - PubMed
  34. American Type Culture Collection Standards Development Organization Workgroup ASN (2010) Cell line misidentification: the beginning of the end. Nat Rev Cancer 10:441–8. https://doi.org/10.1038/nrc2852 - PubMed
  35. Tanabe H, Takada Y, Minegishi D, Kurematsu M, Masui T, Mizusawa H (1999) Cell line individualization by STR multiplex system in the cell bank found cross-contamination between ECV304 and EJ-1/T24. Tiss Cult Res Commun 18:329–338. https://doi.org/10.11418/jtca1981.18.4_329 - PubMed
  36. Mirigian LS, Makareeva E, Mertz EL, Omari S, Roberts-Pilgrim AM, Oestreich AK, Phillips CL, Leikin S (2016) Osteoblast malfunction caused by cell stress response to procollagen misfolding in alpha2(I)-G610C mouse model of osteogenesis imperfecta. J Bone Miner Res 31:1608–1616. https://doi.org/10.1002/jbmr.2824 - PubMed
  37. Peterkofsky B (1991) Ascorbate requirement for hydroxylation and secretion of procollagen: relationship to inhibition of collagen synthesis in scurvy. Am J Clin Nutr 54:1135s-s1140. https://doi.org/10.1093/ajcn/54.6.1135s - PubMed
  38. Stephens DJ, Allan VJ (2003) Light microscopy techniques for live cell imaging. Science 300:82–86. https://doi.org/10.1126/science.1082160 - PubMed
  39. Lippincott-Schwartz J (2011) Emerging in vivo analyses of cell function using fluorescence imaging (*). Annu Rev Biochem 80:327–332. https://doi.org/10.1146/annurev-biochem-121010-125553 - PubMed
  40. Lemon WC, McDole K (2020) Live-cell imaging in the era of too many microscopes. Curr Opin Cell Biol 66:34–42. https://doi.org/10.1016/j.ceb.2020.04.008 - PubMed
  41. Specht EA, Braselmann E, Palmer AE (2017) A critical and comparative review of fluorescent tools for live-cell imaging. Annu Rev Physiol 79:93–117. https://doi.org/10.1146/annurev-physiol-022516-034055 - PubMed
  42. Calverley BC, Kadler KE, Pickard A (2020) Dynamic high-sensitivity quantitation of procollagen-I by endogenous CRISPR-cas9 nanoluciferase tagging. Cells 9:2070. https://doi.org/10.3390/cells9092070 - PubMed
  43. Pickard A, Adamson A, Lu Y, Chang J, Garva R, Hodson N, Kadler KE (2018) Collagen assembly and turnover imaged with a CRISPR-Cas9 engineered dendra2 tag. bioRxiv. https://doi.org/10.1101/331496 - PubMed
  44. Omachi K, Kamura M, Teramoto K, Kojima H, Yokota T, Kaseda S, Kuwazuru J, Fukuda R, Koyama K, Matsuyama S, Motomura K, Shuto T, Suico MA, Kai H (2018) A split-luciferase-based trimer formation assay as a high-throughput screening platform for therapeutics in alport syndrome. Cell Chem Biol 25(634–43):e4. https://doi.org/10.1016/j.chembiol.2018.02.003 - PubMed
  45. Wong MY, Doan ND, DiChiara AS, Papa LJ 3rd, Cheah JH, Soule CK, Watson N, Hulleman JD, Shoulders MD (2018) A high-throughput assay for collagen secretion suggests an unanticipated role for Hsp90 in collagen production. Biochemistry 57:2814–2827. https://doi.org/10.1021/acs.biochem.8b00378 - PubMed
  46. Bonfanti L, Mironov AA Jr, Martinez-Menarguez JA, Martella O, Fusella A, Baldassarre M, Buccione R, Geuze HJ, Mironov AA, Luini A (1998) Procollagen traverses the Golgi stack without leaving the lumen of cisternae: evidence for cisternal maturation. Cell 95:993–1003. https://doi.org/10.1016/s0092-8674(00)81723-7 - PubMed
  47. Mironov AA, Mironov AA Jr, Beznoussenko GV, Trucco A, Lupetti P, Smith JD, Geerts WJ, Koster AJ, Burger KN, Martone ME, Deerinck TJ, Ellisman MH, Luini A (2003) ER-to-Golgi carriers arise through direct en bloc protrusion and multistage maturation of specialized ER exit domains. Dev Cell 5:583–594. https://doi.org/10.1016/s1534-5807(03)00294-6 - PubMed
  48. Weigel AV, Chang CL, Shtengel G, Xu CS, Hoffman DP, Freeman M, Iyer N, Aaron J, Khuon S, Bogovic J, Qiu W, Hess HF, Lippincott-Schwartz J (2021) ER-to-Golgi protein delivery through an interwoven, tubular network extending from ER. Cell 184(2412–29):e16. https://doi.org/10.1016/j.cell.2021.03.035 - PubMed
  49. Zhang Y, Stefanovic B (2016) LARP6 meets collagen mRNA: specific regulation of type I collagen expression. Int J Mol Sci 17:419. https://doi.org/10.3390/ijms17030419 - PubMed
  50. Chessler SD, Byers PH (1993) BiP binds type I procollagen pro alpha chains with mutations in the carboxyl-terminal propeptide synthesized by cells from patients with osteogenesis imperfecta. J Biol Chem 268:18226–18233. https://doi.org/10.1016/S0021-9258(17)46834-7 - PubMed
  51. Scheiber AL, Guess AJ, Kaito T, Abzug JM, Enomoto-Iwamoto M, Leikin S, Iwamoto M, Otsuru S (2019) Endoplasmic reticulum stress is induced in growth plate hypertrophic chondrocytes in G610C mouse model of osteogenesis imperfecta. Biochem Biophys Res Commun 509:235–240. https://doi.org/10.1016/j.bbrc.2018.12.111 - PubMed
  52. Besio R, Iula G, Garibaldi N, Cipolla L, Sabbioneda S, Biggiogera M, Marini JC, Rossi A, Forlino A (2018) 4-PBA ameliorates cellular homeostasis in fibroblasts from osteogenesis imperfecta patients by enhancing autophagy and stimulating protein secretion. Biochim Biophys Acta Mol Basis Dis 1864:1642–1652. https://doi.org/10.1016/j.bbadis.2018.02.002 - PubMed
  53. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308. https://doi.org/10.1038/nprot.2013.143 - PubMed
  54. Zhang JP, Li XL, Li GH, Chen W, Arakaki C, Botimer GD et al (2017) Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol 18:35. https://doi.org/10.1186/s13059-017-1164-8 - PubMed
  55. Makareeva E, Cabral WA, Marini JC, Leikin S (2006) Molecular mechanism of alpha 1(I)-osteogenesis imperfecta/ehlers-danlos syndrome: unfolding of an N-anchor domain at the N-terminal end of the type I collagen triple helix. J Biol Chem 281:6463–6470. https://doi.org/10.1074/jbc.M511830200 - PubMed
  56. Makareeva E, Sun G, Mirigian LS, Mertz EL, Vera JC, Espinoza NA, Yang K, Chen D, Klein TE, Byers PH, Leikin S (2018) Substitutions for arginine at position 780 in triple helical domain of the alpha1(I) chain alter folding of the type I procollagen molecule and cause osteogenesis imperfecta. PLoS One 13:e0200264. https://doi.org/10.1371/journal.pone.0200264 - PubMed
  57. Leikina E, Mertts MV, Kuznetsova N, Leikin S (2002) Type I collagen is thermally unstable at body temperature. Proc Natl Acad Sci USA 99:1314–1318. https://doi.org/10.1073/pnas.032307099 - PubMed
  58. Mirigian LS, Makareeva E, Leikin S (2014) Pulse-chase analysis of procollagen biosynthesis by azidohomoalanine labeling. Connect Tissue Res 55:403–410. https://doi.org/10.3109/03008207.2014.959120 - PubMed
  59. Miura K (2020) Bleach correction ImageJ plugin for compensating the photobleaching of time-lapse sequences. F100Research. https://doi.org/10.12688/f1000research.27171.1 - PubMed
  60. Makareeva E, Han S, Vera JC, Sackett DL, Holmbeck K, Phillips CL, Visse R, Nagase H, Leikin S (2010) Carcinomas contain a matrix metalloproteinase-resistant isoform of type I collagen exerting selective support to invasion. Cancer Res 70:4366–4374. https://doi.org/10.1158/0008-5472.CAN-09-4057 - PubMed
  61. Miles CA, Sims TJ, Camacho NP, Bailey AJ (2002) The role of the α2 chain in the stabilization of the collagen type I heterotrimer: a study of the type I homotrimer in oim mouse tissues. J Mol Biol 321:797–805. https://doi.org/10.1016/S0022-2836(02)00703-9 - PubMed
  62. Kuznetsova NV, McBride DJ, Leikin S (2003) Changes in thermal stability and microunfolding pattern of collagen helix resulting from the loss of alpha2(I) chain in osteogenesis imperfecta murine. J Mol Biol 331:191–200. https://doi.org/10.1016/s0022-2836(03)00715-0 - PubMed
  63. Patterson GH, Knobel SM, Sharif WD, Kain SR, Piston DW (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J 73:2782–2790. https://doi.org/10.1016/S0006-3495(97)78307-3 - PubMed
  64. Sengupta P, Satpute-Krishnan P, Seo AY, Burnette DT, Patterson GH, Lippincott-Schwartz J (2015) ER trapping reveals Golgi enzymes continually revisit the ER through a recycling pathway that controls Golgi organization. Proc Natl Acad Sci USA 112:E6752–E6761. https://doi.org/10.1073/pnas.1520957112 - PubMed

Publication Types