Display options
Share it on

Invest New Drugs. 2021 Nov 24; doi: 10.1007/s10637-021-01201-7. Epub 2021 Nov 24.

Boron neutron capture therapy using dodecaborated albumin conjugates with maleimide is effective in a rat glioma model.

Investigational new drugs

Hideki Kashiwagi, Shinji Kawabata, Kohei Yoshimura, Yusuke Fukuo, Takuya Kanemitsu, Koji Takeuchi, Ryo Hiramatsu, Kai Nishimura, Kazuki Kawai, Takushi Takata, Hiroki Tanaka, Tsubasa Watanabe, Minoru Suzuki, Shin-Ichi Miyatake, Hiroyuki Nakamura, Masahiko Wanibuchi

Affiliations

  1. Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki City, Osaka, Japan.
  2. Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki City, Osaka, Japan. [email protected].
  3. Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Japan.
  4. Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, Japan.
  5. Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki City, Osaka, Japan.

PMID: 34816337 DOI: 10.1007/s10637-021-01201-7

Abstract

Introduction Boron neutron capture therapy (BNCT) is a biologically targeted, cell-selective particle irradiation therapy that utilizes the nuclear capture reaction of boron and neutron. Recently, accelerator neutron generators have been used in clinical settings, and expectations for developing new boron compounds are growing. Methods and Results In this study, we focused on serum albumin, a well-known drug delivery system, and developed maleimide-functionalized closo-dodecaborate albumin conjugate (MID-AC) as a boron carrying system for BNCT. Our biodistribution experiment involved F98 glioma-bearing rat brain tumor models systemically administered with MID-AC and demonstrated accumulation and long retention of boron. Our BNCT study with MID-AC observed statistically significant prolongation of the survival rate compared to the control groups, with results comparable to BNCT study with boronophenylalanine (BPA) which is the standard use of in clinical settings. Each median survival time was as follows: untreated control group; 24.5 days, neutron-irradiated control group; 24.5 days, neutron irradiation following 2.5 h after termination of intravenous administration (i.v.) of BPA; 31.5 days, and neutron irradiation following 2.5 or 24 h after termination of i.v. of MID-AC; 33.5 or 33.0 days, respectively. The biological effectiveness factor of MID-AC for F98 rat glioma was estimated based on these survival times and found to be higher to 12. This tendency was confirmed in BNCT 24 h after MID-AC administration. Conclusion MID-AC induces an efficient boron neutron capture reaction because the albumin contained in MID-AC is retained in the tumor and has a considerable potential to become an effective delivery system for BNCT in treating high-grade gliomas.

© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Keywords: Albumin; Boron neutron capture therapy; Dodecaborate; Drug delivery system; High-grade glioma; Maleimide

References

  1. Stupp R, Hegi ME, Mason WP, Van Den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO, Groups EOFRaTOCBTaRO, Group NCIOCCT (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466. https://doi.org/10.1016/S1470-2045(09)70025-7 - PubMed
  2. Walker MD, Alexander E, Hunt WE, Maccarty CS, Mahaley MS, Mealey J, Norrell HA, Owens G, Ransohoff J, Wilson CB, Gehan EA, Strike TA (1978) Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial J Neurosurg 49(3):333–343. https://doi.org/10.3171/jns.1978.49.3.0333 - PubMed
  3. Taunk NK, Moraes FY, Escorcia FE, Mendez LC, Beal K, Marta GN (2016) External beam re-irradiation, combination chemoradiotherapy, and particle therapy for the treatment of recurrent glioblastoma. Expert Rev Anticancer Ther 16(3):347–358. https://doi.org/10.1586/14737140.2016.1143364 - PubMed
  4. Kawabata S, Miyatake S-I, Kuroiwa T, Yokoyama K, Doi A, Iida K, Miyata S, Nonoguchi N, Michiue H, Takahashi M, Inomata T, Imahori Y, Kirihata M, Sakurai Y, Maruhashi A, Kumada H, Ono K (2009) Boron Neutron Capture Therapy for Newly Diagnosed Glioblastoma. J Radiat Res (Tokyo) 50(1):51–60. https://doi.org/10.1269/jrr.08043 - PubMed
  5. Henriksson R, Capala J, Michanek A, Lindahl SA, Salford LG, Franzén L, Blomquist E, Westlin JE, Bergenheim AT, Group SBTS (2008) Boron neutron capture therapy (BNCT) for glioblastoma multiforme: a phase II study evaluating a prolonged high-dose of boronophenylalanine (BPA). Radiother Oncol 88(2):183–191. https://doi.org/10.1016/j.radonc.2006.04.015 - PubMed
  6. Yamamoto T, Nakai K, Kageji T, Kumada H, Endo K, Matsuda M, Shibata Y, Matsumura A (2009) Boron neutron capture therapy for newly diagnosed glioblastoma. Radiother Oncol 91(1):80–84. https://doi.org/10.1016/j.radonc.2009.02.009 - PubMed
  7. Sköld K, Gorlia T, Pellettieri L, Giusti V, H-Stenstam B, Hopewell JW (2010) Boron neutron capture therapy for newly diagnosed glioblastoma multiforme: an assessment of clinical potential. Br J Radiol 83(991):596–603. https://doi.org/10.1259/bjr/56953620 - PubMed
  8. Miyatake S-I, Kawabata S, Yokoyama K, Kuroiwa T, Michiue H, Sakurai Y, Kumada H, Suzuki M, Maruhashi A, Kirihata M, Ono K (2009) Survival benefit of Boron neutron capture therapy for recurrent malignant gliomas. J Neurooncol 91(2):199–206. https://doi.org/10.1007/s11060-008-9699-x - PubMed
  9. Pellettieri L, H-Stenstam B, Rezaei A, Giusti V, Sköld K (2008) An investigation of boron neutron capture therapy for recurrent glioblastoma multiforme. Acta Neurol Scand 117(3):191–197. https://doi.org/10.1111/j.1600-0404.2007.00924.x - PubMed
  10. Kawabata S, Suzuki M, Hirose K, Tanaka H, Kato T, Goto H, Narita Y, Miyatake S-I (2021) Accelerator-based BNCT for patients with recurrent glioblastoma: a multicenter phase II study. Neuro-Oncology Advances. https://doi.org/10.1093/noajnl/vdab067 - PubMed
  11. Hirose K, Konno A, Hiratsuka J, Yoshimoto S, Kato T, Ono K, Otsuki N, Hatazawa J, Tanaka H, Takayama K, Wada H, Suzuki M, Sato M, Yamaguchi H, Seto I, Ueki Y, Iketani S, Imai S, Nakamura T, Ono T, Endo H, Azami Y, Kikuchi Y, Murakami M, Takai Y (2021) Boron neutron capture therapy using cyclotron-based epithermal neutron source and borofalan (Radiother. Oncol 155:182–187. https://doi.org/10.1016/j.radonc.2020.11.001 - PubMed
  12. Lin T, Zhao P, Jiang Y, Tang Y, Jin H, Pan Z, He H, Yang VC, Huang Y (2016) Blood-Brain-Barrier-Penetrating Albumin Nanoparticles for Biomimetic Drug Delivery via Albumin-Binding Protein Pathways for Antiglioma Therapy. ACS Nano 10(11):9999–10012. https://doi.org/10.1021/acsnano.6b04268 - PubMed
  13. Elsadek B, Kratz F (2012) Impact of albumin on drug delivery–new applications on the horizon. J Control Release 157(1):4–28. https://doi.org/10.1016/j.jconrel.2011.09.069 - PubMed
  14. Kikuchi S, Kanoh D, Sato S, Sakurai Y, Suzuki M, Nakamura H (2016) Maleimide-functionalized closo-dodecaborate albumin conjugates (MID-AC): Unique ligation at cysteine and lysine residues enables efficient boron delivery to tumor for neutron capture therapy. J Control Release 237:160–167. https://doi.org/10.1016/j.jconrel.2016.07.017 - PubMed
  15. Coderre JA, Button TM, Micca PL, Fisher CD, Nawrocky MM, Liu HB (1994) Neutron capture therapy of the 9L rat gliosarcoma using the p-boronophenylalanine-fructose complex. Int J Radiat Oncol Biol Phys 30(3):643–652. https://doi.org/10.1016/0360-3016(92)90951-d - PubMed
  16. Barth RF, Kaur B (2009) Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J Neurooncol 94(3):299–312. https://doi.org/10.1007/s11060-009-9875-7 - PubMed
  17. Takeuchi K, Hattori Y, Kawabata S, Futamura G, Hiramatsu R, Wanibuchi M, Tanaka H, Masunaga S-I, Ono K, Miyatake S-I, Kirihata M (2020) Synthesis and Evaluation of Dodecaboranethiol Containing Kojic Acid (KA-BSH) as a Novel Agent for Boron Neutron Capture Therapy. Cells 9(6):1551. https://doi.org/10.3390/cells9061551 - PubMed
  18. Fukuo Y, Hattori Y, Kawabata S, Kashiwagi H, Kanemitsu T, Takeuchi K, Futamura G, Hiramatsu R, Watanabe T, Hu N, Takata T, Tanaka H, Suzuki M, Miyatake S-I, Kirihata M, Wanibuchi M (2020) The Therapeutic Effects of Dodecaborate Containing Boronophenylalanine for Boron Neutron Capture Therapy in a Rat Brain Tumor Model. Biology 9(12):437. https://doi.org/10.3390/biology9120437 - PubMed
  19. Kanemitsu T, Kawabata S, Fukumura M, Futamura G, Hiramatsu R, Nonoguchi N, Nakagawa F, Takata T, Tanaka H, Suzuki M, Masunaga S-I, Ono K, Miyatake S-I, Nakamura H, Kuroiwa T (2019) Folate receptor-targeted novel boron compound for boron neutron capture therapy on F98 glioma-bearing rats. Radiat Environ Biophys 58(1):59–67. https://doi.org/10.1007/s00411-018-0765-2 - PubMed
  20. Futamura G, Kawabata S, Nonoguchi N, Hiramatsu R, Toho T, Tanaka H, Masunaga S-I, Hattori Y, Kirihata M, Ono K, Kuroiwa T, Miyatake S-I (2017) Evaluation of a novel sodium borocaptate-containing unnatural amino acid as a boron delivery agent for neutron capture therapy of the F98 rat glioma. Radiation Oncol 12(1). https://doi.org/10.1186/s13014-017-0765-4 - PubMed
  21. Suzuki M, Kato I, Aihara T, Hiratsuka J, Yoshimura K, Niimi M, Kimura Y, Ariyoshi Y, Haginomori SI, Sakurai Y, Kinashi Y, Masunaga SI, Fukushima M, Ono K, Maruhashi A (2014) Boron neutron capture therapy outcomes for advanced or recurrent head and neck cancer. J Radiat Res (Tokyo) 55(1):146–153. https://doi.org/10.1093/jrr/rrt098 - PubMed
  22. Coderre JA, Makar MS, Micca PL, Nawrocky MM, Liu HB, Joel DD, Slatkin DN, Amols HI (1993) Derivations of relative biological effectiveness for the high-let radiations produced during boron neutron capture irradiations of the 9L rat gliosarcoma in vitro and in vivo. Int J Radiat Oncol Biol Phys 27(5):1121–1129. https://doi.org/10.1016/0360-3016(93)90533-2 - PubMed
  23. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Pt 1):6387–6392 - PubMed
  24. Maeda H (2021) The 35th Anniversary of the Discovery of EPR Effect: A New Wave of Nanomedicines for Tumor-Targeted Drug Delivery-Personal Remarks and Future Prospects. J Pers Med 11(3). https://doi.org/10.3390/jpm11030229 - PubMed
  25. Park CR, Kim HY, Song MG, Lee YS, Youn H, Chung JK, Cheon GJ, Kang KW (2020) Efficacy and Safety of Human Serum Albumin-Cisplatin Complex in U87MG Xenograft Mouse Models. Int J Mol Sci 21(21). https://doi.org/10.3390/ijms21217932 - PubMed
  26. Ichioka T, Miyatake S, Asai N, Kajimoto Y, Nakagawa T, Hayashi H, Kuroiwa T (2004) Enhanced detection of malignant glioma xenograft by fluorescein-human serum albumin conjugate. J Neurooncol 67(1–2):47–52. https://doi.org/10.1023/b:neon.0000021783.62610.1b - PubMed
  27. Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107(11):4891–4932. https://doi.org/10.1021/cr078381n - PubMed
  28. Raskolupova VI, Popova TV, Zakharova OD, Nikotina AE, Abramova TV, Silnikov VN (2021) Human Serum Albumin Labelling with a New BODIPY Dye Having a Large Stokes Shift. Molecules 26(9). https://doi.org/10.3390/molecules26092679 - PubMed
  29. Ishii S, Sato S, Asami H, Hasegawa T, Kohno JY, Nakamura H (2019) Design of S-S bond containing maleimide-conjugated closo-dodecaborate (SSMID): identification of unique modification sites on albumin and investigation of intracellular uptake. Org Biomol Chem 17(22):5496–5499. https://doi.org/10.1039/c9ob00584f - PubMed
  30. Barth RF, Mi P, Yang W (2018) Boron delivery agents for neutron capture therapy of cancer. Cancer Commun 38(1):35. https://doi.org/10.1186/s40880-018-0299-7 - PubMed
  31. Wang D, Wang C, Wang L, Chen Y (2019) A comprehensive review in improving delivery of small-molecule chemotherapeutic agents overcoming the blood-brain/brain tumor barriers for glioblastoma treatment. Drug Deliv 26(1):551–565. https://doi.org/10.1080/10717544.2019.1616235 - PubMed
  32. Pardridge WM (2012) Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 32(11):1959–1972. https://doi.org/10.1038/jcbfm.2012.126 - PubMed
  33. Van Tellingen O, Yetkin-Arik B, De Gooijer MC, Wesseling P, Wurdinger T, De Vries HE (2015) Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat 19:1–12. https://doi.org/10.1016/j.drup.2015.02.002 - PubMed
  34. Barth RF, Vicente H, M, Harling OK, Kiger W, Riley KJ, Binns PJ, Wagner FM, Suzuki M, Aihara T, Kato I, Kawabata S (2012) Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiat Oncol 7(1):146. https://doi.org/10.1186/1748-717x-7-146 - PubMed

Publication Types