Display options
Share it on

Nanomaterials (Basel). 2021 Nov 18;11(11). doi: 10.3390/nano11113116.

Mechanical Properties of Nanoporous Metallic Ultrathin Films: A Paradigmatic Case.

Nanomaterials (Basel, Switzerland)

Giulio Benetti, Francesco Banfi, Emanuele Cavaliere, Luca Gavioli

Affiliations

  1. Medical Physics Unit, Azienda Ospedaliera Universitaria Integrata, P.le Stefani 1, 37126 Verona, Italy.
  2. FemtoNanoOptics Group, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière, F-69622 Villeurbanne, France.
  3. Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP), Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via della Garzetta 46, 25121 Brescia, Italy.

PMID: 34835879 PMCID: PMC8624309 DOI: 10.3390/nano11113116

Abstract

Nanoporous ultrathin films, constituted by a slab less than 100 nm thick and a certain void volume fraction provided by nanopores, are emerging as a new class of systems with a wide range of possible applications, including electrochemistry, energy storage, gas sensing and supercapacitors. The film porosity and morphology strongly affect nanoporous films mechanical properties, the knowledge of which is fundamental for designing films for specific applications. To unveil the relationships among the morphology, structure and mechanical response, a comprehensive and non-destructive investigation of a model system was sought. In this review, we examined the paradigmatic case of a nanoporous, granular, metallic ultrathin film with comprehensive bottom-up and top-down approaches, both experimentals and theoreticals. The granular film was made of Ag nanoparticles deposited by gas-phase synthesis, thus providing a solvent-free and ultrapure nanoporous system at room temperature. The results, bearing generality beyond the specific model system, are discussed for several applications specific to the morphological and mechanical properties of the investigated films, including bendable electronics, membrane separation and nanofluidic sensing.

Keywords: ellipsometry; flexible solar cells; granular nanomaterials; mechanical modeling; mechanical properties; metallic nanoparticles; molecular dynamics; nanomechanics; picosecond photoacoustic; sensors; ultrathin porous films

References

  1. ACS Nano. 2016 Jun 28;10(6):6265-72 - PubMed
  2. Ultramicroscopy. 2016 Apr;163:38-47 - PubMed
  3. Nanomaterials (Basel). 2021 Aug 31;11(9): - PubMed
  4. ACS Nano. 2017 Oct 24;11(10):10097-10105 - PubMed
  5. Nanomaterials (Basel). 2017 Dec 13;7(12): - PubMed
  6. Sci Rep. 2017 Aug 11;7(1):7955 - PubMed
  7. Chem Soc Rev. 2010 Mar;39(3):1073-95 - PubMed
  8. Nano Lett. 2016 Aug 10;16(8):4773-8 - PubMed
  9. Materials (Basel). 2019 Dec 16;12(24): - PubMed
  10. Nanoscale. 2020 Jun 21;12(23):12602-12612 - PubMed
  11. Sci Rep. 2017 Mar 09;7:44139 - PubMed
  12. Nano Lett. 2006 Oct;6(10):2379-82 - PubMed
  13. ACS Nano. 2019 Oct 22;13(10):11530-11537 - PubMed
  14. Nanoscale. 2018 Jan 25;10(4):2154-2161 - PubMed
  15. ACS Nano. 2012 Dec 21;6(12):10614-21 - PubMed
  16. Nat Commun. 2019 Sep 27;10(1):4394 - PubMed
  17. Langmuir. 2017 Jan 10;33(1):152-157 - PubMed
  18. ACS Appl Mater Interfaces. 2018 Aug 22;10(33):27947-27954 - PubMed
  19. Polymers (Basel). 2021 Mar 16;13(6): - PubMed
  20. Phys Chem Chem Phys. 2019 Dec 7;21(45):25090-25097 - PubMed
  21. Nanomedicine. 2015 Aug;11(6):1417-23 - PubMed
  22. Nanoscale. 2015 Mar 12;7(12):5371-82 - PubMed
  23. Materials (Basel). 2020 Feb 08;13(3): - PubMed
  24. Phys Rev B Condens Matter. 1993 Dec 15;48(24):18178-18188 - PubMed
  25. Sci Rep. 2019 Mar 11;9(1):4075 - PubMed
  26. Nanotechnology. 2015 Feb 20;26(7):075501 - PubMed
  27. Nano Lett. 2020 May 13;20(5):3306-3312 - PubMed
  28. Nanoscale. 2019 Jan 23;11(4):1626-1635 - PubMed

Publication Types

Grant support