Display options
Share it on

Nature. 2021 Dec;600(7888):279-284. doi: 10.1038/s41586-021-04110-0. Epub 2021 Nov 26.

Multiview confocal super-resolution microscopy.

Nature

Yicong Wu, Xiaofei Han, Yijun Su, Melissa Glidewell, Jonathan S Daniels, Jiamin Liu, Titas Sengupta, Ivan Rey-Suarez, Robert Fischer, Akshay Patel, Christian Combs, Junhui Sun, Xufeng Wu, Ryan Christensen, Corey Smith, Lingyu Bao, Yilun Sun, Leighton H Duncan, Jiji Chen, Yves Pommier, Yun-Bo Shi, Elizabeth Murphy, Sougata Roy, Arpita Upadhyaya, Daniel Colón-Ramos, Patrick La Riviere, Hari Shroff

Affiliations

  1. Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA. [email protected].
  2. Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.
  3. Department of Automation, Tsinghua University, Beijing, China.
  4. Leica Microsystems, Buffalo Grove, IL, USA.
  5. SVision, Bellevue, WA, USA.
  6. Applied Scientific Instrumentation, Eugene, OR, USA.
  7. Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA.
  8. Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
  9. Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA.
  10. Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
  11. Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
  12. NHLBI Light Microscopy Facility, National Institutes of Health, Bethesda, MD, USA.
  13. Laboratory of Cardiac Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
  14. Department of Radiology, University of Chicago, Chicago, IL, USA.
  15. Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA.
  16. Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA.
  17. Department of Physics, University of Maryland, College Park, MD, USA.
  18. Marine Biological Laboratory, Woods Hole, MA, USA.
  19. Instituto de Neurobiología, Recinto de Ciencias Médicas, Universidad de Puerto Rico, San Juan, Puerto Rico.

PMID: 34837071 DOI: 10.1038/s41586-021-04110-0

Abstract

Confocal microscopy

© 2021. This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.

References

  1. Pawley, J. B. (ed.) Handbook of Biological Confocal Microscopy 3rd edn (Springer, 2006). - PubMed
  2. Laissue, P. P., Alghamdi, R. A., Tomancak, P., Reynaud, E. G., Shroff, H. Assessing phototoxicity in live fluorescence imaging. Nat. Methods 14, 657–661 (2017). - PubMed
  3. Baumgart, E. & Kubitscheck, U. Scanned light sheet microscopy with confocal slit detection. Opt. Express 20, 21805–21814 (2012). - PubMed
  4. Kumar, A. et al. Using stage- and slit-scanning to improve contrast and optical sectioning in dual-view inverted light-sheet microscopy (diSPIM). Biol. Bull. 231, 26–39 (2016). - PubMed
  5. Guo, M. et al. Rapid image deconvolution and multiview fusion for optical microscopy. Nat. Biotechnol. 38, 1337–1346 (2020). - PubMed
  6. Lucy, L. B. An iterative technique for the rectification of observed distributions. Astron. J. 79, 745–754 (1974). - PubMed
  7. Richardson, W. H. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 62, 55–59 (1972). - PubMed
  8. Descloux, A., Grußmayer, K. S. & Radenovic, A. Parameter-free image resolution estimation based on decorrelation analysis. Nat. Methods 16, 918–924 (2019). - PubMed
  9. Chen, F., Tillberg, P. & Boyden, E. S. Expansion microscopy. Science 347, 543–548 (2015). - PubMed
  10. He, K., Gkioxari, G., Dollár, P. & Girshick, R. Mask R-CNN. In 2017 IEEE Conf. Computer Vision (ICCV) (eds Ikeuchi, K. et al.) 2980–2988 (2017). - PubMed
  11. Lin, T.-Y. et al. Microsoft COCO: common objects in context. In Computer Vision – CCV 2014 (eds Fleet, D. et al.) 740–755 (Springer, 2014). - PubMed
  12. Kosmach, A. et al. Monitoring mitochondrial calcium and metabolism in the beating MCU-KO heart. Cell Rep. 37, 109846 (2021). - PubMed
  13. Wu, Y. et al. Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 108, 17708–17713 (2011). - PubMed
  14. Weigert, M. et al. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Methods 15, 1090–1097 (2018). - PubMed
  15. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983). - PubMed
  16. Wu, Y. et al. Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy. Nat. Biotechnol. 31, 1032–1038 (2013). - PubMed
  17. Kumar, A. et al. Dual-view plane illumination microscopy for rapid and spatially isotropic imaging. Nat. Protoc. 9, 2555–2573 (2014). - PubMed
  18. Duncan, L. H. et al. Isotropic light-sheet microscopy and automated cell lineage analyses to catalogue Caenorhabditis elegans embryogenesis with subcellular resolution. J. Vis. Exp. 148, e59533 (2019). - PubMed
  19. Towlson, E. K., Vértes, P. E., Ahnert, S. E., Schafer, W. R. & Bullmore, E. T. The rich club of the C. elegans neuronal connectome. J. Neurosci. 33, 6380–6387 (2013). - PubMed
  20. White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. B 314, 1–340 (1986). - PubMed
  21. Armenti, S. T., Lohmer, L. L., Sherwood, D. R. & Nance, J. Repurposing an endogenous degradation system for rapid and targeted depletion of C. elegans proteins. Development 141, 4640–4647 (2014). - PubMed
  22. Wu, Y. & Shroff, H. Faster, sharper, and deeper: structured illumination microscopy for biological imaging. Nat. Methods 15, 1011–1019 (2018); correction 16, 205 (2019). - PubMed
  23. Fischer, R. S., Gardel, M. L., Ma, X., Adelstein, R. S. & Waterman, C. M. Local cortical tension by myosin II guides 3D endothelial cell branching. Curr Biol. 19, 260–265 (2009). - PubMed
  24. York, A. G. et al. Instant super-resolution imaging in live cells and embryos via analog image processing. Nat. Methods 10, 1122–1126 (2013). - PubMed
  25. Gambarotto, D. et al. Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nat. Methods 16, 71–74 (2019). - PubMed
  26. Tabara, H., Motohashi, T. & Kohara, Y. A multi-well version of in situ hybridization on whole mount embryos of Caenorhabditis elegans. Nucleic Acids Res. 24, 2119–2124 (1996). - PubMed
  27. Chen, J. et al. Three-dimensional residual channel attention networks denoise and sharpen fluorescence microscopy image volumes. Nat. Methods 18, 678–687 (2020). - PubMed
  28. Wu, Y. et al. Simultaneous multiview capture and fusion improves spatial resolution in wide-field and light-sheet microscopy. Optica 3, 897–910 (2016). - PubMed
  29. Barth, R., Bystricky, K. & Shaban, H. A. Coupling chromatin structure and dynamics by live super-resolution imaging. Sci. Adv. https://doi.org/10.1126/sciadv.aaz2196 (2020). - PubMed
  30. Han, X. et al. A polymer index-matched to water enables diverse applications in fluorescence microscopy. Lab Chip 21, 1549–1562 (2021). - PubMed
  31. Chen, B.-C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014). - PubMed
  32. Gustafsson, M. G. L. et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. 94, 4957–4970 (2008). - PubMed
  33. Rego, E. H. et al. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc. Natl Acad. Sci. USA 109, E135–E143 (2011). - PubMed
  34. Krüger, J.-R., Keller-Findeisen, J., Geisler, C. & Egner, A. Tomographic STED microscopy. Biomed. Opt. Express 11, 3139–3163 (2020). - PubMed
  35. Wu, Y. et al. Reflective imaging improves spatiotemporal resolution and collection efficiency in light sheet microscopy. Nat. Commun. 8, 1452 (2017). - PubMed
  36. Shroff, H., York, A., Giannini, J. P. & Kumar, A. Resolution enhancement for line scanning excitation microscopy systems and methods. US patent 10,247,930 (2019). - PubMed
  37. Wang, H. et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nat. Methods 16, 103–110 (2019). - PubMed
  38. Ji, N. Adaptive optical fluorescence microscopy. Nat. Methods 14, 374–380 (2017). - PubMed
  39. Royer, L. A. et al. Adaptive light-sheet microscopy for long-term, high-resolution imaging in live organisms. Nat. Biotechnol. 34, 1267–1278 (2016). - PubMed
  40. Liu, T.-L. et al. Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms. Science 360, eaaq1392 (2018). - PubMed
  41. Zheng, W. et al. Adaptive optics improves multiphoton super-resolution imaging. Nat. Methods 14, 869–872 (2017). - PubMed

Publication Types

Grant support