Display options
Share it on

Mol Microbiol. 2021 Nov 16; doi: 10.1111/mmi.14846. Epub 2021 Nov 16.

Salmonella Genomic Island 1 requires a self-encoded small RNA for mobilization.

Molecular microbiology

István Nagy, Mónika Szabó, Anna Hegyi, János Kiss

Affiliations

  1. Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöll?, Hungary.

PMID: 34784078 DOI: 10.1111/mmi.14846

Abstract

The SGI1-family elements that are specifically mobilized by the IncA- and IncC-family plasmids are important vehicles of antibiotic resistance among enteric bacteria. Although SGI1 exploits many plasmid-derived conjugation and regulatory functions, the basic mobilization module of the island is unrelated to that of IncC plasmids. This module contains the oriT and encodes the mobilization proteins MpsA and MpsB, which belong to the tyrosine recombinases and not to relaxases. Here we report an additional, essential transfer factor of SGI1. This is a small RNA deriving from the 3'-end of a primary RNA that can also serve as mRNA of ORF S022. The functional domain of this sRNA named sgm-sRNA is encoded between the mpsA gene and the oriT of SGI1. Terminator-like sequence near the promoter of the primary transcript possibly has a regulatory function in controlling the amount of full-length primary RNA, which is converted to the active sgm-sRNA through consecutive maturation steps influenced by the 5'-end of the primary RNA. The mobilization module of SGI1 seems unique due to its atypical relaxase and the newly identified sgm-sRNA, which is required for the horizontal transfer of the island but appears to act differently from classical regulatory sRNAs.

© 2021 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

Keywords: IncC plasmids; SGI1; conjugation; horizontal gene transfer; multiresistance; small RNA

References

  1. Ambrose, S.J., Harmer, C.J. & Hall, R.M. (2018) Evolution and typing of IncC plasmids contributing to antibiotic resistance in Gram-negative bacteria. Plasmid, 99, 40-55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30081066 - PubMed
  2. Bandyra, K.J., Said, N., Pfeiffer, V., Górna, M.W., Vogel, J. & Luisi, B.F. (2012) The seed region of a small RNA drives the controlled destruction of the target mRNA by the endoribonuclease RNase E. Molecular Cell, 47, 943-953. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22902561 - PubMed
  3. Bechhofer, D.H. & Deutscher, M.P. (2019) Bacterial ribonucleases and their roles in RNA metabolism. Critical Reviews in Biochemistry and Molecular Biology, 54, 242-300. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31464530 - PubMed
  4. Bellanger, X., Payot, S., Leblond-Bourget, N. & Guédon, G. (2014) Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiology Reviews, 38, 720-760. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24372381 - PubMed
  5. Blower, T.R., Short, F.L., Rao, F., Mizuguchi, K., Pei, X.Y., Fineran, P.C. et al. (2012) Identification and classification of bacterial Type III toxin-antitoxin systems encoded in chromosomal and plasmid genomes. Nucleic Acids Research, 40, 6158-6173. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22434880 - PubMed
  6. Bossi, L. & Figueroa-Bossi, N. (2016) Competing endogenous RNAs: a target-centric view of small RNA regulation in bacteria. Nature Reviews Microbiology, 14, 775-784. Available from: https://doi.org/10.1038/nrmicro.2016.129 - PubMed
  7. Boyd, D., Cloeckaert, A., Chaslus-Dancla, E. & Mulvey, M.R. (2002) Characterization of variant Salmonella genomic island 1 multidrug resistance regions from serovars Typhimurium DT104 and Agona. Antimicrobial Agents and Chemotherapy, 46(6), 1714-1722. Available from: https://journals.asm.org/doi/10.1128/AAC.46.6.1714-1722.2002 - PubMed
  8. Boyd, D., Peters, G.A., Cloeckaert, A., Boumedine, K.S., Chaslus-Dancla, E., Imberechts, H. et al. (2001) Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region of Salmonella enterica serovar Typhimurium DT104 and its identification in phage type DT120 and serovar Agona. Journal of Bacteriology, 183, 5725-5732. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11544236 - PubMed
  9. Brantl, S. (2012) Bacterial type I toxin-antitoxin systems. RNA Biology, 9, 1488-1490. Available from: http://www.tandfonline.com/doi/abs/https://doi.org/10.4161/rna.23045 - PubMed
  10. Carr, S.B., Phillips, S.E.V. & Thomas, C.D. (2016) Structures of replication initiation proteins from staphylococcal antibiotic resistance plasmids reveal protein asymmetry and flexibility are necessary for replication. Nucleic Acids Research, 44(5), 2417-2428. Available from: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkv1539 - PubMed
  11. Carraro, N., Durand, R., Rivard, N., Anquetil, C., Barrette, C., Humbert, M. et al. (2017) Salmonella genomic island 1 (SGI1) reshapes the mating apparatus of IncC conjugative plasmids to promote self-propagation. PLoS Genetics, 13, e1006705. Available from: https://doi.org/10.1371/journal.pgen.1006705 - PubMed
  12. Carraro, N., Matteau, D., Luo, P., Rodrigue, S. & Burrus, V. (2014) The master activator of IncA/C conjugative plasmids stimulates genomic islands and multidrug resistance dissemination. PLOS Genetics, 10, e1004714. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25340549 - PubMed
  13. Chandler, M., de la Cruz, F., Dyda, F., Hickman, A.B., Moncalian, G. & Ton-Hoang, B. (2013) Breaking and joining single-stranded DNA: the HUH endonuclease superfamily. Nature Reviews Microbiology, 11, 525-538. Available from: https://doi.org/10.1038/nrmicro3067 - PubMed
  14. Corpet, F. (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research, 16(22), 10881-10890. Available from: https://doi.org/10.1093/nar/16.22.10881 - PubMed
  15. Cummins, M.L., Hamidian, M. & Djordjevic, S.P. (2020) Salmonella genomic island 1 is broadly disseminated within gammaproteobacteriaceae. Microorganisms, 8(2), 1-10. Available from: https://www.mdpi.com/2076-2607/8/2/161 - PubMed
  16. Cummins, M.L., Roy Chowdhury, P., Marenda, M.S., Browning, G.F. & Djordjevic, S.P. (2019) Salmonella Genomic Island 1B variant found in a sequence type 117 avian pathogenic Escherichia coli isolate. mSphere, 4(3), e00169-19. Available from: https://doi.org/10.1128/mSphere.00169-19 - PubMed
  17. de Curraize, C., Siebor, E., Neuwirth, C. & Hall, R.M. (2020) SGI0, a relative of Salmonella genomic islands SGI1 and SGI2, lacking a class 1 integron, found in Proteus mirabilis. Plasmid, 107, 102453. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0147619X19301295 - PubMed
  18. Datsenko, K.A. & Wanner, B.L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America, 97(12), 6640-6645. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.120163297 - PubMed
  19. Douard, G., Praud, K., Cloeckaert, A. & Doublet, B. (2010) The Salmonella genomic island 1 is specifically mobilized in trans by the IncA/C multidrug resistance plasmid family. PLoS One, 5(12), e15312. Available from: https://dx.plos.org/10.1371/journal.pone.0015302 - PubMed
  20. Durand, R., Deschênes, F. & Burrus, V. (2021a) Genomic islands targeting dusA in Vibrio species are distantly related to Salmonella Genomic Island 1 and mobilizable by IncC conjugative plasmids. PLoS Genetics, 17(8), e1009669. Available from: https://dx.plos.org/10.1371/journal.pgen.1009669 - PubMed
  21. Durand, R., Huguet, K.T., Rivard, N., Carraro, N., Rodrigue, S. & Burrus, V. (2021b) Crucial role of Salmonella genomic island 1 master activator in the parasitism of IncC plasmids. Nucleic Acids Research, 49(14), 7807-7824. Available from: https://academic.oup.com/nar/article/49/14/7807/6212760 - PubMed
  22. Fineran, P.C., Blower, T.R., Foulds, I.J., Humphreys, D.P., Lilley, K.S. & Salmond, G.P.C. (2009) The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proceedings of the National Academy of Sciences of the United States of America, 106, 894-899. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19124776 - PubMed
  23. Finlay, B.B., Frost, L.S. & Paranchych, W. (1986) Nucleotide sequences of the R1-19 plasmid transfer genes traM, finP, traJ, and traY and the traYZ promoter. Journal of Bacteriology, 166(2), 368-374. Available from: https://journals.asm.org/doi/10.1128/jb.166.2.368-374.1986 - PubMed
  24. Fröhlich, K.S., Papenfort, K., Fekete, A. & Vogel, J. (2013) A small RNA activates CFA synthase by isoform-specific mRNA stabilization. EMBO Journal, 32, 2963-2979. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24141880 - PubMed
  25. Garcillán-Barcia, M.P., Francia, M.V. & De La Cruz, F. (2009) The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiology Reviews, 33(3), 657-687. Available from: https://academic.oup.com/femsre/article-lookup/doi/10.1111/j.1574-6976.2009.00168.x - PubMed
  26. Golding, G.R., Olson, A.B., Doublet, B., Cloeckaert, A., Christianson, S., Graham, M.R. et al. (2007) The effect of the Salmonella genomic island 1 on in vitro global gene expression in Salmonella enterica serovar Typhimurium LT2. Microbes and Infection, 9, 21-27. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17194608 - PubMed
  27. Guzmán-Herrador, D.L. & Llosa, M. (2019) The secret life of conjugative relaxases. Plasmid, 104, 102415. Available from: https://doi.org/10.1016/j.plasmid.2019.102415 - PubMed
  28. Harmer, C.J. & Hall, R.M. (2015) The A to Z of A/C plasmids. Plasmid, 80, 63-82. Available from: https://doi.org/10.1016/j.plasmid.2015.04.003 - PubMed
  29. Harmer, C.J., Hamidian, M., Ambrose, S.J. & Hall, R.M. (2016) Destabilization of IncA and IncC plasmids by SGI1 and SGI2 type Salmonella genomic islands. Plasmid, 87-88, 51-57. Available from: https://doi.org/10.1016/j.plasmid.2016.09.003 - PubMed
  30. Hegyi, A., Szabó, M., Olasz, F. & Kiss, J. (2017) Identification of oriT and a recombination hot spot in the IncA/C plasmid backbone. Scientific Reports, 7, 10595. Available from: http://www.nature.com/articles/s41598-017-11097-0 - PubMed
  31. Heilers, J.H., Reiners, J., Heller, E.M., Golzer, A., Smits, S.H.J., Does, C.V. et al. (2019) DNA processing by the MOBH family relaxase TraI encoded within the gonococcal genetic island. Nucleic Acids Research, 47(15), 8136-8153. Available from: https://academic.oup.com/nar/article/47/15/8136/5528732 - PubMed
  32. Holmqvist, E., Berggren, S. & Rizvanovic, A. (2020) RNA-binding activity and regulatory functions of the emerging sRNA-binding protein ProQ. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1863(9), 194596. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32565402 - PubMed
  33. Huguet, K.T., Gonnet, M., Doublet, B. & Cloeckaert, A. (2016) A toxin antitoxin system promotes the maintenance of the IncA/C-mobilizable Salmonella Genomic Island 1. Scientific Reports, 6(1), 32285. Available from: http://www.nature.com/articles/srep32285 - PubMed
  34. Huguet, K.T., Rivard, N., Garneau, D., Palanee, J. & Burrus, V. (2020) Replication of the Salmonella Genomic Island 1 (SGI1) triggered by helper IncC conjugative plasmids promotes incompatibility and plasmid loss. PLoS Genetics, 16, e1008965. Available from: https://dx.plos.org/10.1371/journal.pgen.1008965 - PubMed
  35. Jørgensen, M.G., Pettersen, J.S. & Kallipolitis, B.H. (2020) sRNA-mediated control in bacteria: an increasing diversity of regulatory mechanisms. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1863(5), 194504. Available from: https://doi.org/10.1016/j.bbagrm.2020.194504 - PubMed
  36. Kiss, J., Nagy, B. & Olasz, F. (2012) Stability, entrapment and variant formation of Salmonella genomic island 1. PLoS One, 7, e32497. Available from: http://dx.plos.org/10.1371/journal.pone.0032497 - PubMed
  37. Kiss, J., Papp, P.P., Szabó, M., Farkas, T., Murányi, G., Szakállas, E. et al. (2015) The master regulator of IncA/C plasmids is recognized by the Salmonella Genomic island SGI1 as a signal for excision and conjugal transfer. Nucleic Acids Research, 43(18), 8735-8745. Available from: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkv758 - PubMed
  38. Kiss, J., Szabó, M., Hegyi, A., Douard, G., Praud, K., Nagy, I. et al. (2019) Identification and characterization of oriT and two mobilization genes required for conjugative transfer of Salmonella Genomic Island 1. Frontiers in Microbiology, 10, 1-16. Available from: https://www.frontiersin.org/article/10.3389/fmicb.2019.00457/full - PubMed
  39. Koraimann, G., Teferle, K., Markolin, G., Woger, W. & Högenauer, G. (1996) The FinOP repressor system of plasmid R1: analysis of the antisense RNA control of traJ expression and conjugative DNA transfer. Molecular Microbiology, 21, 811-821. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8878043 - PubMed
  40. Kuhn, J. & Binder, S. (2002) RT-PCR analysis of 5′ to 3′-end-ligated mRNAs identifies the extremities of cox2 transcripts in pea mitochondria. Nucleic Acids Research, 30(2), 439-446. Available from: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/30.2.439 - PubMed
  41. Levings, R.S., Djordjevic, S.P. & Hall, R.M. (2008) SGI2, a relative of Salmonella genomic island SGI1 with an independent origin. Antimicrobial Agents and Chemotherapy, 52(7), 2529-2537. Available from: https://journals.asm.org/doi/10.1128/AAC.00189-08 - PubMed
  42. Llosa, M. & Alkorta, I. (2017) Coupling proteins in type IV secretion. In: Current topics in microbiology and immunology, pp. 143-168. Available from: http://link.springer.com/ https://doi.org/10.1007/978-3-319-75241-9_6 - PubMed
  43. Llosa, M., Gomis-Rüth, F.X., Coll, M., & de la Cruz, F. (2002) Bacterial conjugation: a two-step mechanism for DNA transport. Molecular Microbiology, 45, 1-8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12100543 - PubMed
  44. Miller, J.H. (1972) Experiment 48 assay of beta-galactosidase. In: Experiments in molecular genetics. Cold Spring Harbor, NY: Cold Spring Harbor Lab Press. pp. 352-355. - PubMed
  45. Murányi, G., Szabó, M., Olasz, F. & Kiss, J. (2016) Determination and analysis of the putative AcaCD-responsive promoters of Salmonella Genomic Island 1. PLoS One, 11, e0164561. Available from: http://dx.plos.org/ https://doi.org/10.1371/journal.pone.0164561 - PubMed
  46. Nowak, K.P., Sobolewska-Ruta, A., Jagiełło, A., Bierczyńska-Krzysik, A., Kierył, P. & Wawrzyniak, P. (2021) Molecular and functional characterization of MobK protein-a novel-type relaxase involved in mobilization for conjugational transfer of Klebsiella pneumoniae plasmid pIGRK. International Journal of Molecular Sciences, 22, 5152. Available from: https://www.mdpi.com/1422-0067/22/10/5152 - PubMed
  47. Núñez, B. & De La Cruz, F. (2001) Two atypical mobilization proteins are involved in plasmid CloDF13 relaxation. Molecular Microbiology, 39, 1088-1099. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11251827 - PubMed
  48. Papenfort, K., Espinosa, E., Casadesús, J. & Vogel, J. (2015) Small RNA-based feedforward loop with AND-gate logic regulates extrachromosomal DNA transfer in Salmonella. Proceedings of the National Academy of Sciences of the United States of America, 112, E4772-E4781. Available from: http://www.pnas.org/lookup/doi/ https://doi.org/10.1073/pnas.1507825112 - PubMed
  49. Quendera, A.P., Seixas, A.F., dos Santos, R.F., Santos, I., Silva, J.P.N., Arraiano, C.M. et al. (2020) RNA-binding proteins driving the regulatory activity of small non-coding RNAs in bacteria. Frontiers in Molecular Biosciences, 7, 1-9. Available from: https://www.frontiersin.org/article/ https://doi.org/10.3389/fmolb.2020.00078/full - PubMed
  50. Reese, M.G. (2001) Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Computers & Chemistry, 26, 51-56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11765852 - PubMed
  51. Richards, J. & Belasco, J.G. (2021) Riboswitch control of bacterial RNA stability. Molecular Microbiology, 116(2), 361-365. Available from: https://onlinelibrary.wiley.com/doi/10.1111/mmi.14723 - PubMed
  52. Sambrook, J., Fritsch, E.F. & Maniatis, T. (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press. - PubMed
  53. Schultz, E., Barraud, O., Madec, J.-Y., Haenni, M., Cloeckaert, A., Ploy, M.-C. et al. (2017) Multidrug resistance Salmonella Genomic Island 1 in a Morganella morganii Subsp. morganii human clinical isolate from France. mSphere, 2, e00118-17. Available from: https://journals.asm.org/doi/10.1128/mSphere.00118-17 - PubMed
  54. Shokeen, S., Johnson, C.M., Greenfield, T.J., Manias, D.A., Dunny, G.M. & Weaver, K.E. (2010) Structural analysis of the Anti-Q-Qs interaction: RNA-mediated regulation of E. faecalis plasmid pCF10 conjugation. Plasmid, 64(1), 26-35. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0147619X10000259 - PubMed
  55. Siebor, E., de Curraize, C., Amoureux, L. & Neuwirth, C. (2016) Mobilization of the Salmonella genomic island SGI1 and the Proteus genomic island PGI1 by the A/C2 plasmid carrying blaTEM-24 harboured by various clinical species of Enterobacteriaceae. Journal of Antimicrobial Chemotherapy, 71(8), 2167-2170. Available from: https://academic.oup.com/jac/article-lookup/doi/10.1093/jac/dkw151 - PubMed
  56. Siebor, E., de Curraize, C. & Neuwirth, C. (2019) Identification of AGI1-A, a variant of Acinetobacter genomic island 1 (AGI1), in a French clinical isolate belonging to the Enterobacter cloacae complex. Journal of Antimicrobial Chemotherapy, 74(2), 311-314. Available from: https://academic.oup.com/jac/article/74/2/311/5166736 - PubMed
  57. Simon, R., Priefer, U. & Pühler, A. (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/Technology, 1, 784-791. Available from: http://www.nature.com/doifinder/ https://doi.org/10.1038/nbt1183-784 - PubMed
  58. Soliman, A.M., Ramadan, H., Ghazy, E., Yu, L., Hisatsune, J., Kayama, S. et al. (2020) Emergence of Salmonella Genomic Island 1 variant SGI1-C in a multidrug-resistant clinical isolate of Klebsiella pneumoniae ST485 from Egypt. Antimicrobial Agents and Chemotherapy, 64, 1-4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32660995 - PubMed
  59. Soliman, A.M., Shimamoto, T., Nariya, H. & Shimamoto, T. (2018) Emergence of Salmonella Genomic Island 1 Variant SGI1-W in a clinical isolate of Providencia stuartii from Egypt. Antimicrobial Agents and Chemotherapy, 63(1), e01793-18. Available from: https://journals.asm.org/doi/epub/10.1128/AAC.01793-18 - PubMed
  60. Solovyev, V. & Salamov, A. (2011) Automatic annotation of microbial genomes and metagenomic sequences. In: Li, R.W. (Ed.) Metagenomics and its applications in agriculture, biomedicine and environmental studies. Nova Science Publishers. pp. 61-78. Available from: https://www.researchgate.net/publication/259450599_V_Solovyev_A_Salamov_2011_Automatic_Annotation_of_Microbial_Genomes_and_Metagenomic_Sequences_In_Metagenomics_and_its_Applications_in_Agriculture_Biomedicine_and_Environmental_Studies_Ed_RW_Li_Nova_Sc - PubMed
  61. Szabó, M., Murányi, G. & Kiss, J. (2021) IncC helper dependent plasmid-like replication of Salmonella Genomic Island 1. Nucleic Acids Research, 49(2), 832-846. Available from: https://academic.oup.com/nar/article/49/2/832/6066640 - PubMed
  62. Wagner, E.G.H., Altuvia, S. & Romby, P. (2002) Antisense RNAs in bacteria and their genetic elements. Advances in Genetics, 46, 361-398. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11931231 - PubMed
  63. Wagner, E.G.H. & Romby, P. (2015) Small RNAs in bacteria and archaea: who they are, what they do, and how they do it. Advances in Genetics, 90, 133-208. Available from: https://doi.org/10.1016/bs.adgen.2015.05.001 - PubMed
  64. Wagner, E.G.H. & Simons, R.W. (1994) Antisense RNA control in bacteria, phages, and plasmids. Annual Review of Microbiology, 48, 713-742. Available from: http://www.annualreviews.org/doi/ https://doi.org/10.1146/annurev.mi.48.100194.003433 - PubMed
  65. Waters, J.L. & Salyers, A.A. (2012) The small RNA RteR inhibits transfer of the Bacteroides conjugative transposon CTnDOT. Journal of Bacteriology, 194, 5228-5236. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22821972 - PubMed
  66. Wisniewski, J.A., Traore, D.A., Bannam, T.L., Lyras, D., Whisstock, J.C. & Rood, J.I. (2016) TcpM: a novel relaxase that mediates transfer of large conjugative plasmids from Clostridium perfringens. Molecular Microbiology, 99(5), 884-896. Available from: https://onlinelibrary.wiley.com/doi/10.1111/mmi.13270 - PubMed
  67. Wu, W., Feng, Y., Tang, G., Qiao, F., McNally, A. & Zong, Z. (2019) NDM Metallo-β-lactamases and their bacterial producers in health care settings. Clinical Microbiology Reviews, 32, e00115-18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30700432 - PubMed
  68. Zhang, X., Wang, C., Feng, Y., Long, H. & Zong, Z. (2020) A pandrug-resistant providencia carrying two blaIMP carbapenemase-encoding genes including blaIMP-69, a New blaIMP variant, on a newly identified worldwide-distributed INCC plasmid. Journal of Infectious Diseases, 221, S253-S256. Available from: https://academic.oup.com/jid/article/221/Supplement_2/S253/5807661 - PubMed
  69. Zheng, Z., Cheng, Q., Chan, E.W. & Chen, S. (2020) Genetic and biochemical characterization of VMB-1, a novel metallo-β-lactamase encoded by a conjugative, broad-host range IncC plasmid from Vibrio spp. Advanced Biosystems, 4, 1900221. Available from: https://onlinelibrary.wiley.com/doi/abs/ https://doi.org/10.1002/adbi.201900221 - PubMed
  70. Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31(13), 3406-3415. Available from: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkg595 - PubMed

Publication Types

Grant support