Display options
Share it on

PLoS Negl Trop Dis. 2021 Nov 16;15(11):e0009978. doi: 10.1371/journal.pntd.0009978. eCollection 2021 Nov.

Aspirin-triggered resolvin D1 reduces parasitic cardiac load by decreasing inflammation in a murine model of early chronic Chagas disease.

PLoS neglected tropical diseases

Ileana Carrillo, Rayane Aparecida Nonato Rabelo, César Barbosa, Mariana Rates, Sebastián Fuentes-Retamal, Fabiola González-Herrera, Daniela Guzmán-Rivera, Helena Quintero, Ulrike Kemmerling, Christian Castillo, Fabiana S Machado, Guillermo Díaz-Araya, Juan D Maya

Affiliations

  1. Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
  2. Programa em Ciências da Saúde, Doenças Infecciosas e Medicina Tropical/ Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  3. Laboratório de Imunorregulação de Doenças Infecciosas, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  4. Escuela de Farmacia, Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile.
  5. Programa de Anatomía y Biología del Desarrollo, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
  6. Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile.
  7. Departamento de Farmacología Química y Toxicología, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.

PMID: 34784372 PMCID: PMC8631674 DOI: 10.1371/journal.pntd.0009978

Abstract

BACKGROUND: Chagas disease, caused by the protozoan Trypanosoma cruzi, is endemic in Latin America and is widely distributed worldwide because of migration. In 30% of cases, after years of infection and in the absence of treatment, the disease progresses from an acute asymptomatic phase to a chronic inflammatory cardiomyopathy, leading to heart failure and death. An inadequate balance in the inflammatory response is involved in the progression of chronic Chagas cardiomyopathy. Current therapeutic strategies cannot prevent or reverse the heart damage caused by the parasite. Aspirin-triggered resolvin D1 (AT-RvD1) is a pro-resolving mediator of inflammation that acts through N-formyl peptide receptor 2 (FPR2). AT-RvD1 participates in the modification of cytokine production, inhibition of leukocyte recruitment and efferocytosis, macrophage switching to a nonphlogistic phenotype, and the promotion of healing, thus restoring organ function. In the present study, AT-RvD1 is proposed as a potential therapeutic agent to regulate the pro-inflammatory state during the early chronic phase of Chagas disease.

METHODOLOGY/PRINCIPAL FINDINGS: C57BL/6 wild-type and FPR2 knock-out mice chronically infected with T. cruzi were treated for 20 days with 5 μg/kg/day AT-RvD1, 30 mg/kg/day benznidazole, or the combination of 5 μg/kg/day AT-RvD1 and 5 mg/kg/day benznidazole. At the end of treatment, changes in immune response, cardiac tissue damage, and parasite load were evaluated. The administration of AT-RvD1 in the early chronic phase of T. cruzi infection regulated the inflammatory response both at the systemic level and in the cardiac tissue, and it reduced cellular infiltrates, cardiomyocyte hypertrophy, fibrosis, and the parasite load in the heart tissue.

CONCLUSIONS/SIGNIFICANCE: AT-RvD1 was shown to be an attractive therapeutic due to its regulatory effect on the inflammatory response at the cardiac level and its ability to reduce the parasite load during early chronic T. cruzi infection, thereby preventing the chronic cardiac damage induced by the parasite.

Conflict of interest statement

The authors have declared that no competing interests exist.

References

  1. Mol Aspects Med. 2017 Dec;58:1-11 - PubMed
  2. Crit Rev Immunol. 2012;32(1):23-63 - PubMed
  3. Mediators Inflamm. 2014;2014:893634 - PubMed
  4. J Immunol. 2012 Jan 15;188(2):649-60 - PubMed
  5. Circulation. 2003 Jul 22;108(3):305-12 - PubMed
  6. J Biol Chem. 2007 Mar 30;282(13):9323-9334 - PubMed
  7. Front Immunol. 2019 Jun 04;10:1267 - PubMed
  8. Nature. 2014 Jun 5;510(7503):92-101 - PubMed
  9. Microbes Infect. 2010 Aug;12(8-9):587-97 - PubMed
  10. J Parasitol. 2010 Aug;96(4):758-64 - PubMed
  11. Front Immunol. 2017 Dec 22;8:1863 - PubMed
  12. Infect Immun. 2003 Aug;71(8):4441-7 - PubMed
  13. Lancet. 2018 Jan 6;391(10115):82-94 - PubMed
  14. Antimicrob Agents Chemother. 2017 Feb 23;61(3): - PubMed
  15. PLoS One. 2014 Mar 06;9(3):e87082 - PubMed
  16. Exp Parasitol. 2017 Nov;182:26-33 - PubMed
  17. Eur J Pharmacol. 2016 Apr 15;777:26-32 - PubMed
  18. Int J Parasitol Drugs Drug Resist. 2015 Dec 12;6(1):12-22 - PubMed
  19. J Immunol. 2011 Aug 15;187(4):1957-69 - PubMed
  20. Annu Rev Pathol. 2019 Jan 24;14:421-447 - PubMed
  21. PLoS Negl Trop Dis. 2013 Apr 18;7(4):e2173 - PubMed
  22. J Immunol. 2005 Mar 1;174(5):2934-41 - PubMed
  23. Int J Cardiol. 2017 Jan 15;227:577-582 - PubMed
  24. Parasite Immunol. 2015 Jul;37(7):376-9 - PubMed
  25. Parasitol Res. 2013 Jul;112(7):2731-9 - PubMed
  26. Lipids. 2004 Nov;39(11):1125-32 - PubMed
  27. Cell Immunol. 2021 Nov;369:104427 - PubMed
  28. Front Pharmacol. 2018 Nov 14;9:1273 - PubMed
  29. Drug Saf. 2018 Nov;41(11):1035-1048 - PubMed
  30. Infect Immun. 2005 Dec;73(12):7960-6 - PubMed
  31. Braz J Infect Dis. 2020 Sep - Oct;24(5):386-397 - PubMed
  32. Biochem Biophys Res Commun. 2015 Sep 4;464(4):1072-1077 - PubMed
  33. Antimicrob Agents Chemother. 2012 Jan;56(1):115-23 - PubMed
  34. J Mol Cell Cardiol. 2015 Jul;84:24-35 - PubMed
  35. Infect Dis Clin North Am. 2019 Mar;33(1):119-134 - PubMed
  36. Infect Immun. 2020 May 20;88(6): - PubMed
  37. J Biol Chem. 2012 Nov 2;287(45):38020-7 - PubMed
  38. Int J Cardiol. 2010 Nov 5;145(1):27-33 - PubMed
  39. Front Microbiol. 2018 Mar 26;9:553 - PubMed
  40. Parasit Vectors. 2018 Jan 30;11(1):72 - PubMed
  41. EClinicalMedicine. 2020 Dec 23;31:100694 - PubMed
  42. Nucleic Acids Res. 2001 May 1;29(9):e45 - PubMed
  43. Br J Clin Pharmacol. 2020 Dec 13;: - PubMed
  44. Am J Pathol. 2012 Jul;181(1):130-40 - PubMed
  45. Mem Inst Oswaldo Cruz. 2017 Mar;112(3):224-235 - PubMed
  46. Open Forum Infect Dis. 2019 Jan 19;6(2):ofz012 - PubMed
  47. J Clin Invest. 2018 Jul 2;128(7):2657-2669 - PubMed
  48. Front Microbiol. 2018 Aug 21;9:1961 - PubMed
  49. Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14530-5 - PubMed
  50. Toxicol Appl Pharmacol. 2014 Jun 1;277(2):118-23 - PubMed
  51. Mem Inst Oswaldo Cruz. 2007 Oct 30;102 Suppl 1:113-22 - PubMed
  52. PLoS Negl Trop Dis. 2018 Nov 1;12(11):e0006814 - PubMed
  53. PLoS Negl Trop Dis. 2013;7(2):e2034 - PubMed
  54. Antimicrob Agents Chemother. 2014 Oct;58(10):6157-64 - PubMed
  55. J Immunol. 2017 Aug 9;: - PubMed
  56. Antimicrob Agents Chemother. 2005 Apr;49(4):1521-8 - PubMed
  57. J Cell Sci. 2013 Sep 1;126(Pt 17):4037-47 - PubMed
  58. Innate Immun. 2016 Apr;22(3):186-95 - PubMed
  59. Pathog Dis. 2015 Dec;73(9):ftv082 - PubMed
  60. Parasitology. 2011 Apr;138(4):481-92 - PubMed
  61. J Immunol. 2001 Sep 15;167(6):3422-6 - PubMed
  62. Circulation. 2000 Dec 12;102(24):3003-8 - PubMed
  63. Circulation. 2018 Sep 18;138(12):e169-e209 - PubMed
  64. Parasite Immunol. 2014 Aug;36(8):377-87 - PubMed
  65. N Engl J Med. 2015 Oct;373(14):1295-306 - PubMed
  66. FASEB J. 2013 Jul;27(7):2733-41 - PubMed
  67. Clin Microbiol Infect. 2018 Dec;24(12):1344.e1-1344.e4 - PubMed
  68. Mol Biol Rep. 2021 Jan;48(1):57-66 - PubMed
  69. Front Immunol. 2018 Aug 24;9:1929 - PubMed
  70. J Immunol. 1994 Oct 1;153(7):3135-40 - PubMed
  71. Glob Heart. 2015 Sep;10(3):167-72 - PubMed

Publication Types