Display options
Share it on

Nat Commun. 2021 Dec 08;12(1):7115. doi: 10.1038/s41467-021-27426-x.

Acetoacetate protects macrophages from lactic acidosis-induced mitochondrial dysfunction by metabolic reprograming.

Nature communications

Clément Adam, Léa Paolini, Naïg Gueguen, Guillaume Mabilleau, Laurence Preisser, Simon Blanchard, Pascale Pignon, Florence Manero, Morgane Le Mao, Alain Morel, Pascal Reynier, Céline Beauvillain, Yves Delneste, Vincent Procaccio, Pascale Jeannin

Affiliations

  1. Univ Angers, Université de Nantes, INSERM, CRCINA, LabEx IGO, SFR ICAT, F-49000, Angers, France.
  2. Univ Angers, CHU d'Angers, INSERM, CNRS, MitoVasc, SFR ICAT, F-49000, Angers, France.
  3. Département de Biochimie et Génétique, CHU d'Angers, Angers, France.
  4. GEROM, Université d'Angers, Angers, France.
  5. Département de Pathologie Cellulaire et Tissulaire, CHU d'Angers, Angers, France.
  6. Laboratoire d'Immunologie et Allergologie, CHU d'Angers, Angers, France.
  7. Univ Angers, SFR ICAT, SCIAM, F-49000, Angers, France.
  8. Institut de Cancérologie de l'Ouest, F-49000, Angers, France.
  9. Laboratoire de Biochimie et biologie moléculaire, CHU d'Angers, Angers, France.
  10. Univ Angers, Université de Nantes, INSERM, CRCINA, LabEx IGO, SFR ICAT, F-49000, Angers, France. [email protected].
  11. Laboratoire d'Immunologie et Allergologie, CHU d'Angers, Angers, France. [email protected].

PMID: 34880237 DOI: 10.1038/s41467-021-27426-x

Abstract

Lactic acidosis, the extracellular accumulation of lactate and protons, is a consequence of increased glycolysis triggered by insufficient oxygen supply to tissues. Macrophages are able to differentiate from monocytes under such acidotic conditions, and remain active in order to resolve the underlying injury. Here we show that, in lactic acidosis, human monocytes differentiating into macrophages are characterized by depolarized mitochondria, transient reduction of mitochondrial mass due to mitophagy, and a significant decrease in nutrient absorption. These metabolic changes, resembling pseudostarvation, result from the low extracellular pH rather than from the lactosis component, and render these cells dependent on autophagy for survival. Meanwhile, acetoacetate, a natural metabolite produced by the liver, is utilized by monocytes/macrophages as an alternative fuel to mitigate lactic acidosis-induced pseudostarvation, as evidenced by retained mitochondrial integrity and function, retained nutrient uptake, and survival without the need of autophagy. Our results thus show that acetoacetate may increase tissue tolerance to sustained lactic acidosis.

© 2021. The Author(s).

References

  1. Dubos, R. J. The micro-environment of inflammation or Metchnikoff revisited. Lancet 269, 1–5 (1955). - PubMed
  2. Simmen, H. P. & Blaser, J. Analysis of pH and pO2 in abscesses, peritoneal fluid, and drainage fluid in the presence or absence of bacterial infection during and after abdominal surgery. Am. J. Surg. 166, 24–27 (1993). - PubMed
  3. Gallagher, F. A. et al. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453, 940–943 (2008). - PubMed
  4. Corbet, C. & Feron, O. Tumour acidosis: from the passenger to the driver’s seat. Nat. Rev. Cancer 17, 577–593 (2017). - PubMed
  5. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009). - PubMed
  6. Sun, S., Li, H., Chen, J. & Qian, Q. Lactic acid: no longer an inert and end-product of glycolysis. Physiology 32, 453–463 (2017). - PubMed
  7. Casey, J. R., Grinstein, S. & Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 11, 50–61 (2010). - PubMed
  8. Gottfried, E. et al. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 107, 2013–2021 (2006). - PubMed
  9. Erra Díaz, F., Dantas, E. & Geffner, J. Unravelling the Interplay between extracellular acidosis and immune cells. Mediat. Inflamm. 2018, 1–11 (2018). - PubMed
  10. Okabe, Y. & Medzhitov, R. Tissue biology perspective on macrophages. Nat. Immunol. 17, 9–17 (2016). - PubMed
  11. Sica, A. & Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 122, 787–795 (2012). - PubMed
  12. Xue, J. et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40, 274–288 (2014). - PubMed
  13. Shaw, T. N. et al. Tissue-resident macrophages in the intestine are long lived and defined by Tim-4 and CD4 expression. J. Exp. Med. 215, 1507–1518 (2018). - PubMed
  14. Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. & Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399–416 (2017). - PubMed
  15. Colegio, O. R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559–563 (2014). - PubMed
  16. Paolini, L. et al. Lactic acidosis together with GM-CSF and M-CSF induces human macrophages toward an inflammatory protumor phenotype. Cancer Immunol. Res. 8, 383–395 (2020). - PubMed
  17. Baldini, N. et al. Metabolism and microenvironment in cancer plasticity. Cancer Metab. 4, 1 (2016). - PubMed
  18. Marino, M. L. et al. Autophagy is a protective mechanism for human melanoma cells under acidic stress. J. Biol. Chem. 287, 30664–30676 (2012). - PubMed
  19. Xie, J. et al. Beyond Warburg effect–dual metabolic nature of cancer cells. Sci. Rep. 4, 4927 (2014). - PubMed
  20. Chen, J. L.-Y. et al. The genomic analysis of lactic acidosis and acidosis response in human cancers. PLoS Genet. 4, e1000293 (2008). - PubMed
  21. Springer, M. Z. & Macleod, K. F. In brief: mitophagy: mechanisms and role in human disease. J. Pathol. 240, 253–255 (2016). - PubMed
  22. Gottlieb, R. A. & Bernstein, D. Mitochondrial remodeling: rearranging, recycling, and reprogramming. Cell Calcium 60, 88–101 (2016). - PubMed
  23. Yu, T., Wang, L. & Yoon, Y. Morphological control of mitochondrial bioenergetics. Front. Biosci. 20, 229–246 (2015). - PubMed
  24. Twig, G. & Shirihai, O. S. The interplay between mitochondrial dynamics and mitophagy. Antioxid. Redox Signal. 14, 1939–1951 (2011). - PubMed
  25. Xie, Z., Nair, U. & Klionsky, D. J. Dissecting autophagosome formation: the missing pieces. Autophagy 4, 920–922 (2008). - PubMed
  26. Mizushima, N., Yoshimori, T. & Levine, B. Methods in mammalian autophagy research. Cell 140, 313–326 (2010). - PubMed
  27. Dikic, I. & Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 19, 349–364 (2018). - PubMed
  28. Zhang, Y., Morgan, M. J., Chen, K., Choksi, S. & Liu, Z. Induction of autophagy is essential for monocyte-macrophage differentiation. Blood 119, 2895–2905 (2012). - PubMed
  29. Pellegrini, P. et al. Tumor acidosis enhances cytotoxic effects and autophagy inhibition by salinomycin on cancer cell lines and cancer stem cells. Oncotarget 7, 35703–35723 (2016). - PubMed
  30. Allen, G. F. G., Toth, R., James, J. & Ganley, I. G. Loss of iron triggers PINK1/Parkin-independent mitophagy. EMBO Rep. 14, 1127–1135 (2013). - PubMed
  31. Benischke, A.-S. et al. Activation of mitophagy leads to decline in Mfn2 and loss of mitochondrial mass in Fuchs endothelial corneal dystrophy. Sci. Rep. 7, 6656 (2017). - PubMed
  32. Palikaras, K., Lionaki, E. & Tavernarakis, N. Balancing mitochondrial biogenesis and mitophagy to maintain energy metabolism homeostasis. Cell Death Differ. 22, 1399–1401 (2015). - PubMed
  33. Kaur, J. & Debnath, J. Autophagy at the crossroads of catabolism and anabolism. Nat. Rev. Mol. Cell Biol. 16, 461–472 (2015). - PubMed
  34. Xiao, B., Deng, X., Zhou, W. & Tan, E.-K. Flow cytometry-based assessment of mitophagy using MitoTracker. Front. Cell Neurosci. 10, 76 (2016). - PubMed
  35. Lee, M. H. et al. Mitochondria-immobilized pH-sensitive off-on fluorescent probe. J. Am. Chem. Soc. 136, 14136–14142 (2014). - PubMed
  36. Tal, M. C. et al. Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc. Natl Acad. Sci. USA 106, 2770–2775 (2009). - PubMed
  37. Chen, J. L.-Y. et al. Lactic acidosis triggers starvation response with paradoxical induction of TXNIP through MondoA. PLoS Genet. 6, e1001093 (2010). - PubMed
  38. Garcia, D. & Shaw, R. J. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol. Cell 66, 789–800 (2017). - PubMed
  39. Pietrocola, F., Galluzzi, L., Bravo-San Pedro, J. M., Madeo, F. & Kroemer, G. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab. 21, 805–821 (2015). - PubMed
  40. Mariño, G. et al. Regulation of autophagy by cytosolic acetyl-coenzyme A. Mol. Cell 53, 710–725 (2014). - PubMed
  41. Hecht, V. C. et al. Biophysical changes reduce energetic demand in growth factor-deprived lymphocytes. J. Cell Biol. 212, 439–447 (2016). - PubMed
  42. Chang, T.-K. et al. Uba1 functions in Atg7- and Atg3-independent autophagy. Nat. Cell Biol. 15, 1067–1078 (2013). - PubMed
  43. Xie, J. et al. Beyond Warburg effect-dual metabolic nature of cancer cells. Sci. Rep. 4, 4927 (2014). - PubMed
  44. Newell, K. J. & Tannock, I. F. Reduction of intracellular pH as a possible mechanism for killing cells in acidic regions of solid tumors: effects of carbonylcyanide-3-chlorophenylhydrazone. Cancer Res. 49, 4477–4482 (1989). - PubMed
  45. Persi, E. et al. Systems analysis of intracellular pH vulnerabilities for cancer therapy. Nat. Commun. 9, 2997 (2018). - PubMed
  46. Talley, K. & Alexov, E. On the pH-optimum of activity and stability of proteins. Proteins 78, 2699–2706 (2010). - PubMed
  47. Izquierdo, E. et al. Reshaping of human macrophage polarization through modulation of glucose catabolic pathways. J. Immunol. 195, 2442–2451 (2015). - PubMed
  48. Puchalska, P. & Crawford, P. A. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. 25, 262–284 (2017). - PubMed
  49. Puchalska, P. et al. Hepatocyte-macrophage acetoacetate shuttle protects against tissue fibrosis. Cell Metab. 29, 383–398.e7 (2019). - PubMed
  50. Jain, S. K., Kannan, K., Lim, G., McVie, R. & Bocchini, J. A. Hyperketonemia increases tumor necrosis factor- secretion in cultured U937 monocytes and type 1 diabetic patients and is apparently mediated by oxidative stress and cAMP deficiency. Diabetes 51, 2287–2293 (2002). - PubMed
  51. Jain, S. K. et al. Elevated blood interleukin-6 levels in hyperketonemic type 1 diabetic patients and secretion by acetoacetate-treated cultured U937 monocytes. Diabetes Care 26, 2139–2143 (2003). - PubMed
  52. Dietl, K. et al. Lactic acid and acidification inhibit TNF secretion and glycolysis of human monocytes. J. Immunol. 184, 1200–1209 (2010). - PubMed
  53. Peter, K., Rehli, M., Singer, K., Renner-Sattler, K. & Kreutz, M. Lactic acid delays the inflammatory response of human monocytes. Biochem. Biophys. Res. Commun. 457, 412–418 (2015). - PubMed
  54. Berezhnov, A. V. et al. Intracellular pH modulates autophagy and mitophagy. J. Biol. Chem. 291, 8701–8708 (2016). - PubMed
  55. Rotin, D., Robinson, B. & Tannock, I. F. Influence of hypoxia and an acidic environment on the metabolism and viability of cultured cells: potential implications for cell death in tumors. Cancer Res. 46, 2821–2826 (1986). - PubMed
  56. Wahl, M. L., Pooler, P. M., Briand, P., Leeper, D. B. & Owen, C. S. Intracellular pH regulation in a nonmalignant and a derived malignant human breast cell line. J. Cell. Physiol. 183, 373–380 (2000). - PubMed
  57. Evans, K. et al. Acidosis-sensing glutamine pump SNAT2 determines amino acid levels and mammalian target of rapamycin signalling to protein synthesis in L6 muscle cells. J. Am. Soc. Nephrol. 18, 1426–1436 (2007). - PubMed
  58. Evans, K. et al. Inhibition of SNAT2 by metabolic acidosis enhances proteolysis in skeletal muscle. J. Am. Soc. Nephrol. 19, 2119–2129 (2008). - PubMed
  59. Tan, H. W. S., Sim, A. Y. L. & Long, Y. C. Glutamine metabolism regulates autophagy-dependent mTORC1 reactivation during amino acid starvation. Nat. Commun. 8, 338 (2017). - PubMed
  60. Lorin, S. et al. Glutamate dehydrogenase contributes to leucine sensing in the regulation of autophagy. Autophagy 9, 850–860 (2013). - PubMed
  61. Meijer, A. J., Lorin, S., Blommaart, E. F. & Codogno, P. Regulation of autophagy by amino acids and mTOR-dependent signal transduction. Amino Acids 47, 2037–2063 (2015). - PubMed
  62. Benej, M. et al. CA IX stabilizes intracellular pH to maintain metabolic reprogramming and proliferation in hypoxia. Front. Oncol. 10, 1462 (2020). - PubMed
  63. Glancy, B. et al. Mitochondrial lactate metabolism: history and implications for exercise and disease. J. Physiol. 599, 863–888 (2021). - PubMed
  64. Nakajima, A. et al. The short chain fatty acid receptor GPR43 regulates inflammatory signals in adipose tissue M2-type macrophages. PLoS ONE 12, e0179696 (2017). - PubMed
  65. Miyamoto, J. et al. Ketone body receptor GPR43 regulates lipid metabolism under ketogenic conditions. Proc. Natl Acad. Sci. USA 116, 23813–23821 (2019). - PubMed
  66. Arulkumaran, N. et al. Mitochondrial function in sepsis. Shock 45, 271–281 (2016). - PubMed
  67. Singer, M. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence 5, 66–72 (2014). - PubMed
  68. Brealey, D. & Singer, M. Mitochondrial dysfunction in sepsis. Curr. Infect. Dis. Rep. 5, 365–371 (2003). - PubMed
  69. Van Wyngene, L., Vandewalle, J. & Libert, C. Reprogramming of basic metabolic pathways in microbial sepsis: therapeutic targets at last? EMBO Mol. Med. 10, e8712 (2018). - PubMed
  70. Wang, A. et al. Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation. Cell 166, 1512–1525.e12 (2016). - PubMed
  71. Leite, H. P. & de Lima, L. F. P. Metabolic resuscitation in sepsis: a necessary step beyond the hemodynamic? J. Thorac. Dis. 8, E552–E557 (2016). - PubMed
  72. Ohtoshi, M. et al. Ketogenesis during sepsis in relation to hepatic energy metabolism. Res. Exp. Med. 184, 209–219 (1984). - PubMed
  73. Wildenhoff, K. E., Johansen, J. P., Karstoft, H., Yde, H. & Sorensen, N. S. Diurnal variations in the concentrations of blood acetoacetate and 3-hydroxybutyrate. The ketone body peak around midnight and its relationship to free fatty acids, glycerol, insulin, growth hormone and glucose in serum and plasma. Acta Med. Scand. 195, 25–28 (1974). - PubMed
  74. McNeil, C. A., Pramfalk, C., Humphreys, S. M. & Hodson, L. The storage stability and concentration of acetoacetate differs between blood fractions. Clin. Chim. Acta 433, 278–283 (2014). - PubMed
  75. Shivva, V. et al. The population pharmacokinetics of D-β-hydroxybutyrate following administration of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate. AAPS J. 18, 678–688 (2016). - PubMed
  76. Thevenet, J. et al. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems. FASEB J. 30, 1913–1926 (2016). - PubMed
  77. Martinez-Outschoorn, U. E. et al. Ketone bodies and two-compartment tumor metabolism: stromal ketone production fuels mitochondrial biogenesis in epithelial cancer cells. Cell Cycle 11, 3956–3963 (2012). - PubMed

Publication Types