Display options
Share it on

AIMS Neurosci. 2021 Oct 28;8(4):548-557. doi: 10.3934/Neuroscience.2021030. eCollection 2021.

Potential molecular link between the β-amyloid precursor protein (APP) and hypoxanthine-guanine phosphoribosyltransferase (HGprt) enzyme in Lesch-Nyhan disease and cancer.

AIMS neuroscience

Khue Vu Nguyen

Affiliations

  1. Department of Medicine, Biochemical Genetics and Metabolism, The Mitochondrial and Metabolic Disease Center, School of Medicine, University of California, San Diego, Building CTF, Room C-103, 214 Dickinson Street, San Diego, CA 92103-8467, USA.
  2. Department of Pediatrics, University of California, San Diego, School of Medicine, San Diego, La Jolla, CA 92093-0830, USA.

PMID: 34877405 PMCID: PMC8611187 DOI: 10.3934/Neuroscience.2021030

Abstract

Lesch-Nyhan disease (LND) is a rare X-linked inherited neurogenetic disorders of purine metabolic in which the cytoplasmic enzyme, hypoxanthine-guanine phosphoribosyltransferase (HGprt) is defective. Despite having been characterized over 60 years ago, however, up to now, there is no satisfactory explanation of how deficits in enzyme HGprt can lead to LND with the development of the persistent and severe self-injurious behavior. Recently, a role for epistasis between the mutated hypoxanthine phosphoribosyltransferase 1 (

© 2021 the Author(s), licensee AIMS Press.

Keywords: APP gene; COVID-19; Lesch-Nyhan disease; alternative splicing; antisense drugs; cancer; epigenetics; epistasis; hypoxanthine phosphoribosyltransferase 1 (HPRT1) gene; hypoxanthine-guanine phosphoribosyltransferase (HGprt) enzyme; thrombosis; β-amyloid precursor protein (APP)

Conflict of interest statement

Conflict of interest: The author declares that there are no conflicts of interest.

References

  1. Mol Cell Oncol. 2018 Aug 1;5(4):e1481810 - PubMed
  2. Neuroscience. 2000;98(2):397-401 - PubMed
  3. Onco Targets Ther. 2017 Mar 30;10:1921-1932 - PubMed
  4. Biomol Concepts. 2015 Mar;6(1):11-32 - PubMed
  5. J Exp Clin Cancer Res. 2018 Jul 21;37(1):163 - PubMed
  6. Neurosci Lett. 2015 Mar 17;590:35-9 - PubMed
  7. Ann Neurol. 2014 Jul;76(1):95-107 - PubMed
  8. Hum Mol Genet. 2002 Oct 1;11(20):2463-8 - PubMed
  9. Mol Neurodegener. 2006 Jul 03;1:5 - PubMed
  10. Oncotarget. 2016 Apr 12;7(15):19430-44 - PubMed
  11. Brain Dev. 1992 Nov;14(6):424-5 - PubMed
  12. Antiviral Res. 2020 Apr;176:104742 - PubMed
  13. Mol Cell Biol. 1986 Feb;6(2):393-403 - PubMed
  14. Neurology. 2015 Jan 13;84(2):190-6 - PubMed
  15. Biochem Biophys Res Commun. 2014 Apr 18;446(4):1091-5 - PubMed
  16. J Neurosci. 2009 Apr 29;29(17):5666-70 - PubMed
  17. Am J Hum Genet. 1977 May;29(3):304-11 - PubMed
  18. AIMS Neurosci. 2019 Oct 29;6(4):273-281 - PubMed
  19. Arch Neurol. 1998 Apr;55(4):547-53 - PubMed
  20. Brain. 2014 May;137(Pt 5):1282-303 - PubMed
  21. Science. 1967 Mar 31;155(3770):1682-4 - PubMed
  22. Intractable Rare Dis Res. 2017 Feb;6(1):65-68 - PubMed
  23. Nucleosides Nucleotides Nucleic Acids. 2020;39(6):905-922 - PubMed
  24. Thromb Res. 2017 Jul;155:58-64 - PubMed
  25. Blood. 2017 Jul 27;130(4):527-536 - PubMed
  26. Brain Res. 2001 Nov 9;918(1-2):20-7 - PubMed
  27. Am J Med. 2014 Jul;127(7):e11-2 - PubMed
  28. Neurosci Lett. 2017 Mar 16;643:52-58 - PubMed
  29. Annu Rev Genet. 1985;19:127-48 - PubMed
  30. Am J Hum Genet. 2017 Aug 3;101(2):177-191 - PubMed
  31. Nucleosides Nucleotides Nucleic Acids. 2021;40(6):665-706 - PubMed
  32. Lancet Neurol. 2013 Dec;12(12):1151-8 - PubMed
  33. Hum Mol Genet. 2009 Jul 1;18(13):2317-27 - PubMed
  34. Cancer Cell Int. 2019 Jan 21;19:19 - PubMed
  35. Am J Med. 1964 Apr;36:561-70 - PubMed
  36. Nucleosides Nucleotides Nucleic Acids. 2015;34(10):674-90 - PubMed
  37. Hum Hered. 2003;56(1-3):73-82 - PubMed
  38. Med Oncol. 2018 May 5;35(6):89 - PubMed
  39. Eur J Pharmacol. 2000 Sep 29;405(1-3):277-83 - PubMed
  40. Prog Neurobiol. 2003 May;70(1):1-32 - PubMed

Publication Types