Display options
Share it on

Nature. 2021 Dec 08; doi: 10.1038/s41586-021-04175-x. Epub 2021 Dec 08.

Structures of the σ.

Nature

Assaf Alon, Jiankun Lyu, Joao M Braz, Tia A Tummino, Veronica Craik, Matthew J O'Meara, Chase M Webb, Dmytro S Radchenko, Yurii S Moroz, Xi-Ping Huang, Yongfeng Liu, Bryan L Roth, John J Irwin, Allan I Basbaum, Brian K Shoichet, Andrew C Kruse

Affiliations

  1. Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
  2. Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA.
  3. Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA.
  4. Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, CA, USA.
  5. Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
  6. Enamine, Kyiv, Ukraine.
  7. Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.
  8. Chemspace, Kyiv, Ukraine.
  9. Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
  10. National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
  11. Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
  12. Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA. [email protected].
  13. Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA. [email protected].
  14. Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA. [email protected].

PMID: 34880501 DOI: 10.1038/s41586-021-04175-x

Abstract

The σ

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

References

  1. Waarde, A. V. et al. Potential applications for sigma receptor ligands in cancer diagnosis and therapy. Biochim. Biophys. Acta 1848, 2703–2714 (2015). - PubMed
  2. Harvey, P. D. et al. Effects of roluperidone (MIN-101) on two dimensions of the negative symptoms factor score: reduced emotional experience and reduced emotional expression. Schizophr. Res. 215, 352–356 (2020). - PubMed
  3. Sahn, J. J., Mejia, G. L., Ray, P. R., Martin, S. F. & Price, T. J. Sigma 2 receptor/Tmem97 agonists produce long lasting antineuropathic pain effects in mice. ACS Chem. Neurosci. 8, 1801–1811 (2017). - PubMed
  4. Intagliata, S. et al. Discovery of a highly selective sigma-2 receptor ligand, 1-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-3-methyl-1H-benzo[d]imidazol-2(3H)-one (CM398), with drug-like properties and antinociceptive effects in vivo. AAPS J. 22, 94 (2020). - PubMed
  5. Quadir, S. G. et al. The Sigma-2 receptor / transmembrane protein 97 (σ2R/TMEM97) modulator JVW-1034 reduces heavy alcohol drinking and associated pain states in male mice. Neuropharmacology 184, 108409 (2021). - PubMed
  6. Grundman, M. et al. A phase 1 clinical trial of the sigma‐2 receptor complex allosteric antagonist CT1812, a novel therapeutic candidate for Alzheimer’s disease. Alzheimers Dement. 5, 20–26 (2018). - PubMed
  7. Riad, A. et al. Sigma-2 receptor/TMEM97 and PGRMC-1 increase the rate of internalization of LDL by LDL receptor through the formation of a ternary complex. Sci. Rep. 8, 16845 (2018). - PubMed
  8. Abate, C. et al. PB28, the sigma-1 and sigma-2 receptors modulator with potent anti–SARS-CoV-2 activity: a review about its pharmacological properties and structure affinity relationships. Front. Pharmacol. 11, 589810 (2020). - PubMed
  9. Shields, S. D., Eckert, W. A. & Basbaum, A. I. Spared nerve injury model of neuropathic pain in the mouse: a behavioral and anatomic analysis. J. Pain 4, 465–470 (2003). - PubMed
  10. Hellewell, S. B. et al. Rat liver and kidney contain high densities of σ - PubMed
  11. Hellewell, S. B. & Bowen, W. D. A sigma-like binding site in rat pheochromocytoma (PC12) cells: decreased affinity for (+)-benzomorphans and lower molecular weight suggest a different sigma receptor form from that of guinea pig brain. Brain Res. 527, 244–253 (1990). - PubMed
  12. Hanner, M. et al. Purification, molecular cloning, and expression of the mammalian sigma1-binding site. Proc. Natl. Acad. Sci. U.S.A. 93, 8072–8077 (1996). - PubMed
  13. Langa, F. et al. Generation and phenotypic analysis of sigma receptor type I (sigma1) knockout mice. Eur. J. Neurosci. 18, 2188–2196 (2003). - PubMed
  14. Alon, A. et al. Identification of the gene that codes for the σ - PubMed
  15. Ebrahimi-Fakhari, D. et al. Reduction of TMEM97 increases NPC1 protein levels and restores cholesterol trafficking in Niemann-pick type C1 disease cells. Hum. Mol. Genet. 25, 3588–3599 (2016). - PubMed
  16. Bartz, F. et al. Identification of cholesterol-regulating genes by targeted RNAi screening. Cell Metab. 10,75 (2009). - PubMed
  17. Sanchez-Pulido, L. & Ponting, C. P. TM6SF2 and MAC30, new enzyme homologs in sterol metabolism and common metabolic disease. Front. Genet. 5, 439 (2014). - PubMed
  18. Mahdessian, H. et al. TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content. Proc. Natl. Acad. Sci. U.S.A. 111, 8918 (2014). - PubMed
  19. Vilner, B. J., John, C. S. & Bowen, W. D. Sigma-1 and sigma-2 receptors are expressed in a wide variety of human and rodent tumor cell lines. Cancer Res. 55, 408–413 (1995). - PubMed
  20. Scott, L. L. et al. Small molecule modulators of σ - PubMed
  21. Vázquez-Rosa, E. et al. Neuroprotective efficacy of a sigma 2 receptor/TMEM97 modulator (DKR-1677) after traumatic brain injury. ACS Chem. Neurosci. 10, 1595–1602 (2019). - PubMed
  22. Stein, R. M. et al. Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature 579, 609–614 (2020). - PubMed
  23. Schuller, M. et al. Fragment binding to the Nsp3 macrodomain of SARS-CoV-2 identified through crystallographic screening and computational docking. Sci. Adv. 7, eabf8711 (2021). - PubMed
  24. Schmidt, H. R. & Kruse, A. C. The molecular function of σ receptors: past, present, and future. Trends Pharmacol. Sci. 40, 636–654 (2019). - PubMed
  25. Caffrey, M. & Cherezov, V. Crystallizing membrane proteins using lipidic mesophases. Nat. Protoc. 4, 706–731 (2009). - PubMed
  26. Long, T. et al. Structural basis for human sterol isomerase in cholesterol biosynthesis and multidrug recognition. Nat. Commun. 10, 2452 (2019). - PubMed
  27. Audet, M. & Stevens, R. C. Emerging structural biology of lipid G protein‐coupled receptors. Protein Sci. 28, 292–304 (2019). - PubMed
  28. Schmidt, H. R. et al. Crystal structure of the human σ - PubMed
  29. Hubler, Z. et al. Accumulation of 8,9-unsaturated sterols drives oligodendrocyte formation and remyelination. Nature 560, 372–376 (2018). - PubMed
  30. Lyu, J. et al. Ultra-large library docking for discovering new chemotypes. Nature 566, 224–229 (2019). - PubMed
  31. Fischer, A., Smieško, M., Sellner, M. & Lill, M. A. Decision making in structure-based drug discovery: visual inspection of docking results. J. Med. Chem. 64, 2489–2500 (2021). - PubMed
  32. Cendán, C. M., Pujalte, J. M., Portillo-Salido, E., Montoliu, L. & Baeyens, J. M. Formalin-induced pain is reduced in σ - PubMed
  33. Puente, B. D. L. et al. Sigma-1 receptors regulate activity-induced spinal sensitization and neuropathic pain after peripheral nerve injury. Pain 145, 294–303 (2009). - PubMed
  34. Cendán, C. M., Pujalte, J. M., Portillo-Salido, E. & Baeyens, J. M. Antinociceptive effects of haloperidol and its metabolites in the formalin test in mice. Psychopharmacology 182, 485–493 (2005). - PubMed
  35. Romero, L. et al. Pharmacological properties of S1RA, a new sigma‐1 receptor antagonist that inhibits neuropathic pain and activity‐induced spinal sensitization. Br. J. Pharmacol. 166, 2289–2306 (2012). - PubMed
  36. Bruna, J. et al. Efficacy of a novel sigma-1 receptor antagonist for oxaliplatin-induced neuropathy: a randomized, double-blind, placebo-controlled phase IIa clinical trial. Neurotherapeutics 15, 178–189 (2018). - PubMed
  37. Vela, J. M., Merlos, M. & Almansa, C. Investigational sigma-1 receptor antagonists for the treatment of pain. Expert Opin. Investig. Drugs 24, 883–896 (2015). - PubMed
  38. Kooistra, A. J. et al. GPCRdb in 2021: integrating GPCR sequence, structure and function. Nucleic Acids Res. 49, D335–D343 (2021). - PubMed
  39. Hauser, A. S. et al. Pharmacogenomics of GPCR drug targets. Cell 172, 41–54 (2018). - PubMed
  40. Kroeze, W. K. et al. PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. Nat. Struct. Mol. Biol. 22, 362–369 (2015). - PubMed
  41. Nastasi, G. et al. S2RSLDB: a comprehensive manually curated, internet-accessible database of the sigma-2 receptor selective ligands. J. Cheminformatics 9, 3 (2017). - PubMed
  42. Huang, X.-P. et al. Allosteric ligands for the pharmacologically dark receptors GPR68 and GPR65. Nature 527, 477–483 (2015). - PubMed
  43. Wang, S. et al. Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature 555, 269–273 (2018). - PubMed
  44. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). - PubMed
  45. Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40, D370–D376 (2012). - PubMed
  46. Gordon, D. E. et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583, 459–468 (2020). - PubMed
  47. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997). - PubMed
  48. Kabsch, W. XDS. Acta Crystallogr. D 66,132 (2010). - PubMed
  49. Alford, R. F. et al. An integrated framework advancing membrane protein modeling and design. PLoS Comput. Biol. 11, e1004398 (2015). - PubMed
  50. Mccoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40,674 (2007). - PubMed
  51. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019). - PubMed
  52. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010). - PubMed
  53. The PyMOL Molecular Graphics System v.2.5 (Schrödinger). - PubMed
  54. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). - PubMed
  55. Chu, U. B. & Ruoho, A. E. Sigma receptor binding assays. Curr. Protoc. Pharmacol. 71, 1.34.1–1.34.21 (2015). - PubMed
  56. Weiner, S. J. et al. A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 106, 765–784 (1984). - PubMed
  57. Meng, E. C., Shoichet, B. K. & Kuntz, I. D. Automated docking with grid‐based energy evaluation. J. Comput. Chem. 13, 505–524 (1992). - PubMed
  58. Gallagher, K. & Sharp, K. Electrostatic contributions to heat capacity changes of DNA–ligand binding. Biophys. J. 75, 769–776 (1998). - PubMed
  59. Mysinger, M. M. & Shoichet, B. K. Rapid context-dependent ligand desolvation in molecular docking. J. Chem. Inf. Model. 50, 1561–1573 (2010). - PubMed
  60. Stein, R. M. et al. Property-unmatched decoys in docking benchmarks. J. Chem. Inf. Model. 61, 699–714 (2021). - PubMed
  61. Gu, S., Smith, M. S., Yang, Y., Irwin, J. J. & Shoichet, B. K. Ligand strain energy in large library docking. J. Chem. Inf. Model. 61, 4331–4341 (2021). - PubMed
  62. Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017). - PubMed
  63. Bürkner, P.-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017). - PubMed
  64. Gelman, A., Goodrich, B., Gabry, J. & Vehtari, A. R-squared for Bayesian regression models. Am. Statistician 73, 307–309 (2018). - PubMed
  65. Kay, M. tidybayes: tidy data and geoms for Bayesian models. https://doi.org/10.5281/zenodo.1308151 (Zenodo, 2020). - PubMed
  66. Wickham, H. ggplot2: elegant graphics for data analysis (Springer, 2016). - PubMed
  67. Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019). - PubMed
  68. R Core Team. R: a Language and Environment for Statistical Computing. http://www.R-project.org (R Foundation for Statistical Computing, 2018). - PubMed
  69. Skubic, C., Vovk, I., Rozman, D. & Križman, M. Simplified LC-MS method for analysis of sterols in biological samples. Molecules 25, 4116 (2020). - PubMed
  70. Longo, P. A., Kavran, J. M., Kim, M.-S. & Leahy, D. J. Transient mammalian cell transfection with polyethylenimine (PEI). Methods Enzymol. 529, 227–240 (2013). - PubMed
  71. Besnard, J. et al. Automated design of ligands to polypharmacological profiles. Nature 492, 215–220 (2012). - PubMed
  72. Scherrer, G. et al. Dissociation of the opioid receptor mechanisms that control mechanical and heat pain. Cell 137, 1148–1159 (2009). - PubMed
  73. Muralidharan, A. et al. Identification and characterization of novel candidate compounds targeting 6‐ and 7‐transmembrane μ‐opioid receptor isoforms. Br. J. Pharmacol. 178, 2709–2726 (2021). - PubMed
  74. Chaplan, S. R., Bach, F. W., Pogrel, J. W., Chung, J. M. & Yaksh, T. L. Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods 53, 55–63 (1994). - PubMed
  75. Solorzano, C. et al. Primary afferent and spinal cord expression of gastrin-releasing peptide: message, protein, and antibody concerns. J. Neurosci. 35, 648–657 (2015). - PubMed
  76. Notredame, C., Higgins, D. G. & Heringa, J. T-coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205–217 (2000). - PubMed
  77. Liebschner, D. et al. Polder maps: improving OMIT maps by excluding bulk solvent. Acta Crystallogr. D 73, 148–157 (2017). - PubMed

Publication Types