Display options
Share it on

Front Physiol. 2021 Nov 22;12:730418. doi: 10.3389/fphys.2021.730418. eCollection 2021.

Prediction of Survival After Partial Hepatectomy Using a Physiologically Based Pharmacokinetic Model of Indocyanine Green Liver Function Tests.

Frontiers in physiology

Adrian Köller, Jan Grzegorzewski, Hans-Michael Tautenhahn, Matthias König

Affiliations

  1. Institute for Theoretical Biology, Institute of Biology, Humboldt University, Berlin, Germany.
  2. Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany.

PMID: 34880771 PMCID: PMC8646028 DOI: 10.3389/fphys.2021.730418

Abstract

The evaluation of hepatic function and functional capacity of the liver are essential tasks in hepatology as well as in hepatobiliary surgery. Indocyanine green (ICG) is a widely applied test compound that is used in clinical routine to evaluate hepatic function. Important questions for the functional evaluation with ICG in the context of hepatectomy are how liver disease such as cirrhosis alters ICG elimination, and if postoperative survival can be predicted from preoperative ICG measurements. Within this work a physiologically based pharmacokinetic (PBPK) model of ICG was developed and applied to the prediction of the effects of a liver resection under various degrees of cirrhosis. For the parametrization of the computational model and validation of model predictions a database of ICG pharmacokinetic data was established. The model was applied (i) to study the effect of liver cirrhosis and liver resection on ICG pharmacokinetics; and (ii) to evaluate the model-based prediction of postoperative ICG-R15 (retention ratio 15 min after administration) as a measure for postoperative outcome. Key results are the accurate prediction of changes in ICG pharmacokinetics caused by liver cirrhosis and postoperative changes of ICG-elimination after liver resection, as validated with a wide range of data sets. Based on the PBPK model, individual survival after liver resection could be classified, demonstrating its potential value as a clinical tool.

Copyright © 2021 Köller, Grzegorzewski, Tautenhahn and König.

Keywords: computational model; hepatectomy; indocyanine green; liver cirrhosis; liver function; liver resection; mathematical model; pharmacokinetics

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Br J Clin Pharmacol. 1991 Dec;32(6):697-704 - PubMed
  2. JAMA. 1967 Apr 17;200(3):236-40 - PubMed
  3. J Gastroenterol Hepatol. 1997 Feb;12(2):167-71 - PubMed
  4. World J Gastroenterol. 2013 Nov 28;19(44):7983-91 - PubMed
  5. J Surg Res. 2002 Mar;103(1):109-13 - PubMed
  6. J Surg Oncol. 2018 Sep;118(3):440-445 - PubMed
  7. Lancet. 2008 Mar 8;371(9615):838-51 - PubMed
  8. CPT Pharmacometrics Syst Pharmacol. 2013 Aug 14;2:e63 - PubMed
  9. Hepatology. 1984 Jan-Feb;4(1):38-46 - PubMed
  10. Clin Liver Dis. 2003 Aug;7(3):715-27, ix - PubMed
  11. Proc Soc Exp Biol Med. 1975 Dec;150(3):612-7 - PubMed
  12. Mol Syst Biol. 2020 Aug;16(8):e9110 - PubMed
  13. Br J Surg. 2019 Oct;106(11):1523-1529 - PubMed
  14. Clin Sci. 1961 Aug;21:43-57 - PubMed
  15. Gastroenterology. 1976 Mar;70(3):385-91 - PubMed
  16. Liver. 2001 Feb;21(1):26-30 - PubMed
  17. J Integr Bioinform. 2019 Jun 20;16(2): - PubMed
  18. Gut. 1998 Jun;42(6):868-74 - PubMed
  19. World J Gastroenterol. 2016 Mar 7;22(9):2725-35 - PubMed
  20. HPB (Oxford). 2015 Jun;17(6):471-6 - PubMed
  21. J Hepatol. 1993 Nov;19(3):327-44 - PubMed
  22. Gastroenterology. 1960 Sep;39:293-304 - PubMed
  23. J Pharmacokinet Biopharm. 1980 Oct;8(5):483-96 - PubMed
  24. Ann ICRP. 2002;32(3-4):5-265 - PubMed
  25. Clin Pharmacol Ther. 1990 Oct;48(4):375-80 - PubMed
  26. Clin Pharmacol Ther. 1988 Aug;44(2):217-24 - PubMed
  27. Ann Surg. 2013 May;257(5):922-8 - PubMed
  28. J Hepatobiliary Pancreat Sci. 2021 Jan;28(1):86-94 - PubMed
  29. Circulation. 1997 Apr 1;95(7):1837-43 - PubMed
  30. Nat Methods. 2020 Mar;17(3):261-272 - PubMed
  31. J Clin Invest. 1962 May;41:1169-79 - PubMed
  32. J Clin Pharmacol. 2000 Jul;40(7):739-44 - PubMed
  33. Clin Sci (Lond). 1991 Feb;80(2):155-60 - PubMed
  34. Major Probl Clin Surg. 1964;1:1-85 - PubMed
  35. Hepatogastroenterology. 1982 Apr;29(2):55-7 - PubMed
  36. J Breath Res. 2017 Nov 29;12(1):016005 - PubMed
  37. Hepatogastroenterology. 2006 Jan-Feb;53(67):120-3 - PubMed
  38. World J Surg Oncol. 2020 Apr 23;18(1):79 - PubMed
  39. Eur J Clin Pharmacol. 1988;35(3):295-303 - PubMed
  40. Clin Chem. 1991 Oct;37(10 Pt 1):1688-90 - PubMed
  41. Br J Surg. 2006 Mar;93(3):339-46 - PubMed
  42. Pharmacotherapy. 1995 Nov-Dec;15(6):693-700 - PubMed
  43. Am J Surg. 2000 Feb;179(2):161-6 - PubMed
  44. Scand J Gastroenterol. 1999 Aug;34(8):813-7 - PubMed
  45. Hepatol Res. 2009 Feb;39(2):107-16 - PubMed
  46. Proc Soc Exp Biol Med. 1958 Oct;99(1):11-4 - PubMed
  47. J Surg Res. 2004 Feb;116(2):248-52 - PubMed
  48. Eur Rev Med Pharmacol Sci. 2002 Mar-Jun;6(2-3):33-44 - PubMed
  49. Anasthesiol Intensivmed Notfallmed Schmerzther. 1992 Nov;27(7):406-13 - PubMed
  50. J Clin Invest. 1960 Apr;39:592-600 - PubMed
  51. Br J Surg. 1973 Aug;60(8):646-9 - PubMed
  52. Bioinformatics. 2015 Oct 15;31(20):3315-21 - PubMed
  53. HPB Surg. 1997;10(3):182-3 - PubMed
  54. J Clin Monit Comput. 2018 Oct;32(5):787-796 - PubMed
  55. Clin Pharmacol Ther. 2000 Apr;67(4):342-50 - PubMed
  56. Eur J Gastroenterol Hepatol. 2016 Aug;28(8):948-54 - PubMed
  57. Gastroenterol Res Pract. 2017;2017:7397840 - PubMed
  58. Clin Sci (Lond). 1983 Feb;64(2):207-12 - PubMed
  59. Ann Surg. 2009 Jul;250(1):119-25 - PubMed
  60. J Gastroenterol Hepatol. 2019 Jun;34(6):1093-1099 - PubMed
  61. World J Surg. 2008 Dec;32(12):2668-74 - PubMed
  62. PLoS One. 2016 Nov 3;11(11):e0165481 - PubMed
  63. Nucleic Acids Res. 2021 Jan 8;49(D1):D1358-D1364 - PubMed

Publication Types