Display options
Share it on

Anal Bioanal Chem. 2021 Dec 09; doi: 10.1007/s00216-021-03814-6. Epub 2021 Dec 09.

Characterisation of a new online nanoLC-CZE-MS platform and application for the glycosylation profiling of alpha-1-acid glycoprotein.

Analytical and bioanalytical chemistry

Alexander Stolz, Christian Neusüß

Affiliations

  1. Faculty of Chemistry, Aalen University, Beethovenstr. 1, 73430, Aalen, Germany.
  2. Department of Pharmaceutical and Medicinal Chemistry, Friedrich Schiller University, 07743, Jena, Germany.
  3. Faculty of Chemistry, Aalen University, Beethovenstr. 1, 73430, Aalen, Germany. [email protected].

PMID: 34881393 DOI: 10.1007/s00216-021-03814-6

Abstract

The ever-increasing complexity of biological samples to be analysed by mass spectrometry has led to the necessity of sophisticated separation techniques, including multidimensional separation. Despite a high degree of orthogonality, the coupling of liquid chromatography (LC) and capillary zone electrophoresis (CZE) has not gained notable attention in research. Here, we present a heart-cut nanoLC-CZE-ESI-MS platform to analyse intact proteins. NanoLC and CZE-MS are coupled using a four-port valve with an internal nanoliter loop. NanoLC and CZE-MS conditions were optimised independently to find ideal conditions for the combined setup. The valve setup enables an ideal transfer efficiency between the dimensions while maintaining good separation conditions in both dimensions. Due to the higher loadability, the nanoLC-CZE-MS setup exhibits a 280-fold increased concentration sensitivity compared to CZE-MS. The platform was used to characterise intact human alpha-1-acid glycoprotein (AGP), an extremely heterogeneous N-glycosylated protein. With the nanoLC-CZE-MS approach, 368 glycoforms can be assigned at a concentration of 50 μg/mL as opposed to the assignment of only 186 glycoforms from 1 mg/mL by CZE-MS. Additionally, we demonstrate that glycosylation profiling is accessible for dried blood spot analysis (25 μg/mL AGP spiked), indicating the general applicability of our setup to biological matrices. The combination of high sensitivity and orthogonal selectivity in both dimensions makes the here-presented nanoLC-CZE-MS approach capable of detailed characterisation of intact proteins and their proteoforms from complex biological samples and in physiologically relevant concentrations.

© 2021. The Author(s).

Keywords: Capillary zone electrophoresis; Glycoprotein; Heart-cut; Intact protein analysis; Orosomucoid; Two-dimensional separation

References

  1. Aksenov AA, Da Silva R, Knight R, Lopes NP, Dorrestein PC. Global chemical analysis of biology by mass spectrometry. Nat Rev Chem. 2017. https://doi.org/10.1038/s41570-017-0054 . - PubMed
  2. Fekete S, Guillarme D, Sandra P, Sandra K. Chromatographic, electrophoretic, and mass spectrometric methods for the analytical characterization of protein biopharmaceuticals. Anal Chem. 2016. https://doi.org/10.1021/acs.analchem.5b04561 . - PubMed
  3. Stroink T, Ortiz MC, Bult A, Lingeman H, de Jong GJ, Underberg WJM. On-line multidimensional liquid chromatography and capillary electrophoresis systems for peptides and proteins. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2005. https://doi.org/10.1016/j.jchromb.2004.11.057 . - PubMed
  4. Ranjbar L, Foley JP, Breadmore MC. Multidimensional liquid-phase separations combining both chromatography and electrophoresis - a review. Anal Chim Acta. 2017. https://doi.org/10.1016/j.aca.2016.10.025 . - PubMed
  5. Yuan H, Jiang B, Zhao B, Zhang L, Zhang Y. Recent advances in multidimensional separation for proteome analysis. Anal Chem. 2019. https://doi.org/10.1021/acs.analchem.8b04894 . - PubMed
  6. Stoll D, Danforth J, Zhang K, Beck A. Characterization of therapeutic antibodies and related products by two-dimensional liquid chromatography coupled with UV absorbance and mass spectrometric detection. J Chromatogr B: Anal Technol Biomed Life Sci. 2016. https://doi.org/10.1016/j.jchromb.2016.05.029 . - PubMed
  7. Pirok BWJ, Stoll DR, Schoenmakers PJ. Recent developments in two-dimensional liquid chromatography: fundamental improvements for practical applications. Anal Chem. 2019. https://doi.org/10.1021/acs.analchem.8b04841 . - PubMed
  8. Pirok BWJ, Gargano AFG, Schoenmakers PJ. Optimizing separations in online comprehensive two-dimensional liquid chromatography. J Sep Sci. 2018. https://doi.org/10.1002/jssc.201700863 . - PubMed
  9. Giddings JC. Two-dimensional separations: concept and promise. Anal Chem. 1984. https://doi.org/10.1021/ac00276a003 . - PubMed
  10. Hooker TF, Jorgenson JW. A Transparent flow gating interface for the coupling of microcolumn LC with CZE in a comprehensive two-dimensional system. Anal Chem. 1997. https://doi.org/10.1021/ac970342w . - PubMed
  11. Bergström SK, Samskog J, Markides KE. Development of a poly(dimethylsiloxane) interface for on-line capillary column liquid chromatography−capillary electrophoresis coupled to sheathless electrospray ionization time-of-flight mass spectrometry. Anal Chem. 2003. https://doi.org/10.1021/ac030117g . - PubMed
  12. Beutner A, Kochmann S, Mark JJP, Matysik F-M. Two-dimensional separation of ionic species by hyphenation of capillary ion chromatography × capillary electrophoresis-mass spectrometry. Anal Chem. 2015. https://doi.org/10.1021/ac504800d . - PubMed
  13. Chambers AG, Mellors JS, Henley WH, Ramsey JM. Monolithic integration of two-dimensional liquid chromatography-capillary electrophoresis and electrospray ionization on a microfluidic device. Anal Chem. 2011. https://doi.org/10.1021/ac102437z . - PubMed
  14. Mellors JS, Black WA, Chambers AG, Starkey JA, Lacher NA, Ramsey JM. Hybrid capillary/microfluidic system for comprehensive online liquid chromatography-capillary electrophoresis-electrospray ionization-mass spectrometry. Anal Chem. 2013. https://doi.org/10.1021/ac400205a . - PubMed
  15. Bushey MM, Jorgenson JW. Automated instrumentation for comprehensive 2-dimensional high-performance liquid-chromatography capillary zone electrophoresis. Anal Chem. 1990. https://doi.org/10.1021/ac00209a002 . - PubMed
  16. Lemmo A, Larmann J, Moore AW, Jorgenson JW. 2-Dimensional separations of peptides and proteins by comprehensive liquid-chromatography capillary-electroporesis. Electrophoresis. 1993. https://doi.org/10.1002/elps.1150140169 . - PubMed
  17. Ranjbar L, Gaudry AJ, Breadmore MC, Shellie RA. Online comprehensive two-dimensional ion chromatography × capillary electrophoresis. Anal Chem. 2015. https://doi.org/10.1021/acs.analchem.5b01130 . - PubMed
  18. Jooß K, Hühner J, Kiessig S, Moritz B, Neusüß C. Two-dimensional capillary zone electrophoresis-mass spectrometry for the characterization of intact monoclonal antibody charge variants, including deamidation products. Anal Bioanal Chem. 2017. https://doi.org/10.1007/s00216-017-0542-0 . - PubMed
  19. Römer J, Montealegre C, Schlecht J, Kiessig S, Moritz B, Neusüß C. Online mass spectrometry of CE (SDS)-separated proteins by two-dimensional capillary electrophoresis. Anal Bioanal Chem. 2019. https://doi.org/10.1007/s00216-019-02102-8 . - PubMed
  20. Römer J, Kiessig S, Moritz B, Neusüß C. Improved CE(SDS)-CZE-MS method utilizing an 8-port nanoliter valve. Electrophoresis. 2021. https://doi.org/10.1002/elps.202000180 . - PubMed
  21. Jooß K, Scholz N, Meixner J, Neusüß C. Heart-cut nano-LC-CZE-MS for the characterization of proteins on the intact level. Electrophoresis. 2019. https://doi.org/10.1002/elps.201800411 . - PubMed
  22. Lewis KC, Opiteck GJ, Jorgenson JW, Sheeley DM. Comprehensive on-line RPLC-CZE-MS of peptides. J Am Soc Mass Spectrom. 1997. https://doi.org/10.1016/S1044-0305(97)00009-3 . - PubMed
  23. Zhang J, Hu H, Gao M, Yang P, Zhang X. Comprehensive two-dimensional chromatography and capillary electrophoresis coupled with tandem time-of-flight mass spectrometry for high-speed proteome analysis. Electrophoresis. 2004. https://doi.org/10.1002/elps.200405956 . - PubMed
  24. Bergström SK, Dahlin AP, Ramström M, Andersson M, Markides KE, Bergquist J. A simplified multidimensional approach for analysis of complex biological samples: on-line LC-CE-MS. Analyst. 2006. https://doi.org/10.1039/b601660j . - PubMed
  25. Chen B, Brown KA, Lin Z, Ge Y. Top-down proteomics: ready for prime time? Anal Chem. 2018. https://doi.org/10.1021/acs.analchem.7b04747 . - PubMed
  26. Srzentić K, Fornelli L, Tsybin YO, Loo JA, Seckler H, Agar JN, Anderson LC, Bai DL, Beck A, Brodbelt JS, van der Burgt Yuri EM, Chamot-Rooke J, Chatterjee S, Chen Y, Clarke DJ, Danis PO, Diedrich JK, D’Ippolito RA, Dupré M, et al. Interlaboratory study for characterizing monoclonal antibodies by top-down and middle-down mass spectrometry. J Am Soc Mass Spectrom. 2020. https://doi.org/10.1021/jasms.0c00036 . - PubMed
  27. Smith LM, Kelleher NL. Proteoforms as the next proteomics currency. Science (New York, NY). 2018. https://doi.org/10.1126/science.aat1884 . - PubMed
  28. Fournier T, Medjoubi-N N, Porquet D. Alpha-1-acid glycoprotein. Biochim Biophys Acta Protein Struct Mol Enzymol. 2000. https://doi.org/10.1016/S0167-4838(00)00153-9 . - PubMed
  29. Ongay S, Neusüss C. Isoform differentiation of intact AGP from human serum by capillary electrophoresis-mass spectrometry. Anal Bioanal Chem. 2010. https://doi.org/10.1007/s00216-010-3948-5 . - PubMed
  30. Schmid K, Nimberg RB, Kimura A, Yamaguchi H, Binette JP. The carbohydrate units of human plasma α1-acid glycoprotein. Biochimica et Biophysica Acta (BBA) - Protein. Structure. 1977:10.1016/0005-2795(77)90080-0 . - PubMed
  31. Ceciliani F, Pocacqua V. The acute phase protein alpha 1-acid glycoprotein: a model for altered glycosylation during diseases. Curr Protein Pept Sci. 2007. https://doi.org/10.2174/138920307779941497 . - PubMed
  32. Balmana M, Gimenez E, Puerta A, Llop E, Figueras J, Fort E, Sanz-Nebot V, de Bolos C, Rizzi A, Barrabes S, de Frutos M, Peracaula R. Multiple approaches to characterise alpha-1-acid glycoprotein glycosylation in pancreatic cancer. FEBS J. 2015;282:280. - PubMed
  33. Tanabe K, Kitagawa K, Kojima N, Iijima S. Multifucosylated alpha-1-acid glycoprotein as a novel marker for hepatocellular carcinoma. J Proteome Res. 2016. https://doi.org/10.1021/acs.jproteome.5b01145 . - PubMed
  34. Schlecht J, Stolz A, Hofmann A, Gerstung L, Neusüß C. nanoCEasy: an easy, flexible, and robust nanoflow sheath liquid capillary electrophoresis-mass spectrometry interface based on 3d printed parts. Anal Chem. 2021. https://doi.org/10.1021/acs.analchem.1c03213 . - PubMed
  35. Höcker O, Montealegre C, Neusüß C. Characterization of a nanoflow sheath liquid interface and comparison to a sheath liquid and a sheathless porous-tip interface for CE-ESI-MS in positive and negative ionization. Anal Bioanal Chem. 2018. https://doi.org/10.1007/s00216-018-1179-3 . - PubMed
  36. Neuberger S, Jooß K, Ressel C, Neusüß C. Quantification of ascorbic acid and acetylsalicylic acid in effervescent tablets by CZE-UV and identification of related degradation products by heart-cut CZE-CZE-MS. Anal Bioanal Chem. 2016. https://doi.org/10.1007/s00216-016-9734-2 . - PubMed
  37. Stolz A, Hedeland Y, Salzer L, Römer J, Heiene R, Leclercq L, Cottet H, Bergquist J, Neusüß C. Capillary zone electrophoresis-top-down tandem mass spectrometry for in-depth characterization of hemoglobin proteoforms in clinical and veterinary samples. Anal Chem. 2020. https://doi.org/10.1021/acs.analchem.0c01350 . - PubMed
  38. Dubský P, Ördögová M, Malý M, Riesová M. CEval: All-in-one software for data processing and statistical evaluations in affinity capillary electrophoresis. J Chromatogr A. 2016. https://doi.org/10.1016/j.chroma.2016.04.004 . - PubMed
  39. Bobály B, Veuthey J-L, Guillarme D, Fekete S. New developments and possibilities of wide-pore superficially porous particle technology applied for the liquid chromatographic analysis of therapeutic proteins. J Pharm Biomed Anal. 2018. https://doi.org/10.1016/j.jpba.2018.06.006 . - PubMed
  40. Lemmo AV, Jorgenson JW. Transverse flow gating interface for the coupling of microcolumn LC with CZE in a comprehensive two-dimensional system. Anal Chem. 1993. https://doi.org/10.1021/ac00059a016 . - PubMed
  41. Huhn C, Ramautar R, Wuhrer M, Somsen GW. Relevance and use of capillary coatings in capillary electrophoresis-mass spectrometry. Anal Bioanal Chem. 2010. https://doi.org/10.1007/s00216-009-3193-y . - PubMed
  42. Bekri S, Leclercq L, Cottet H. Polyelectrolyte multilayer coatings for the separation of proteins by capillary electrophoresis: influence of polyelectrolyte nature and multilayer crosslinking. J Chromatogr A. 2015. https://doi.org/10.1016/j.chroma.2015.04.033 . - PubMed
  43. Leclercq L, Morvan M, Koch J, Neusüß C, Cottet H. Modulation of the electroosmotic mobility using polyelectrolyte multilayer coatings for protein analysis by capillary electrophoresis. Anal Chim Acta. 2019. https://doi.org/10.1016/j.aca.2019.01.008 . - PubMed
  44. Nehmé R, Perrin C, Cottet H, Blanchin M-D, Fabre H. Stability of capillaries coated with highly charged polyelectrolyte monolayers and multilayers under various analytical conditions--application to protein analysis. J Chromatogr A. 2011. https://doi.org/10.1016/j.chroma.2011.03.040 . - PubMed
  45. Leclercq L, Renard C, Martin M, Cottet H. Quantification of adsorption and optimization of separation of proteins in capillary electrophoresis. Anal Chem. 2020. https://doi.org/10.1021/acs.analchem.0c02012 . - PubMed
  46. Colombo S, Buclin T, Décosterd LA, Telenti A, Furrer H, Lee BL, Biollaz J, Eap CB. Orosomucoid (alpha1-acid glycoprotein) plasma concentration and genetic variants: effects on human immunodeficiency virus protease inhibitor clearance and cellular accumulation. Clin Pharmacol Ther. 2006. https://doi.org/10.1016/j.clpt.2006.06.006 . - PubMed

Publication Types