Display options
Share it on

Cancer Discov. 2021 Jul;11(7):1716-1735. doi: 10.1158/2159-8290.CD-20-1351. Epub 2021 Feb 10.

Exploiting Allosteric Properties of RAF and MEK Inhibitors to Target Therapy-Resistant Tumors Driven by Oncogenic BRAF Signaling.

Cancer discovery

Christos Adamopoulos, Tamer A Ahmed, Maxwell R Tucker, Peter M U Ung, Min Xiao, Zoi Karoulia, Angelo Amabile, Xuewei Wu, Stuart A Aaronson, Celina Ang, Vito W Rebecca, Brian D Brown, Avner Schlessinger, Meenhard Herlyn, Qi Wang, David E Shaw, Poulikos I Poulikakos

Affiliations

  1. Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
  2. D. E. Shaw Research, New York, New York.
  3. Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
  4. The Wistar Institute, Philadelphia, Pennsylvania.
  5. Department of Genetics and Genomics Sciences, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
  6. Department of Medicine, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
  7. D. E. Shaw Research, New York, New York. [email protected] [email protected].
  8. Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York.
  9. Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York. [email protected] [email protected].

PMID: 33568355 PMCID: PMC8295204 DOI: 10.1158/2159-8290.CD-20-1351

Abstract

Current clinical RAF inhibitors (RAFi) inhibit monomeric BRAF (mBRAF) but are less potent against dimeric BRAF (dBRAF). RAFi equipotent for mBRAF and dBRAF have been developed but are predicted to have lower therapeutic index. Here we identify a third class of RAFi that selectively inhibits dBRAF over mBRAF. Molecular dynamic simulations reveal restriction of the movement of the BRAF αC-helix as the basis of inhibitor selectivity. Combination of inhibitors based on their conformation selectivity (mBRAF- plus dBRAF-selective plus the most potent BRAF-MEK disruptor MEK inhibitor) promoted suppression of tumor growth in BRAF

©2021 American Association for Cancer Research.

References

  1. Cancer Cell. 2014 May 12;25(5):697-710 - PubMed
  2. Nat Struct Mol Biol. 2020 Feb;27(2):134-141 - PubMed
  3. Nat Rev Drug Discov. 2014 Dec;13(12):928-42 - PubMed
  4. Nat Commun. 2020 Sep 1;11(1):4370 - PubMed
  5. J Chem Theory Comput. 2016 Jan 12;12(1):281-96 - PubMed
  6. Nature. 2002 Jun 27;417(6892):949-54 - PubMed
  7. Nature. 2010 Mar 18;464(7287):427-30 - PubMed
  8. J Clin Oncol. 2015 Dec 1;33(34):4023-31 - PubMed
  9. Cancer Res. 2013 Jul 1;73(13):4050-4060 - PubMed
  10. Cell Rep. 2018 Nov 6;25(6):1501-1510.e3 - PubMed
  11. J Comput Chem. 2004 Jul 15;25(9):1157-74 - PubMed
  12. Cell Rep. 2016 Jun 28;16(1):263-277 - PubMed
  13. Nat Biotechnol. 2015 Dec;33(12):1287-1292 - PubMed
  14. Trends Biochem Sci. 2014 Oct;39(10):465-74 - PubMed
  15. Cancer Cell. 2009 Nov 6;16(5):401-12 - PubMed
  16. Cell Rep. 2017 Nov 14;21(7):1953-1967 - PubMed
  17. Nat Protoc. 2014 Sep;9(9):2100-22 - PubMed
  18. Lancet. 2013 Jan 26;381(9863):303-12 - PubMed
  19. Cancer Cell. 2014 Sep 8;26(3):402-413 - PubMed
  20. Nature. 2012 Jan 26;483(7387):100-3 - PubMed
  21. Cancer Discov. 2018 Apr;8(4):428-443 - PubMed
  22. Nature. 2019 Nov;575(7783):545-550 - PubMed
  23. Mol Cancer Ther. 2015 Oct;14(10):2187-97 - PubMed
  24. Nature. 2011 Nov 23;480(7377):387-90 - PubMed
  25. Cancer Cell. 2015 Sep 14;28(3):384-98 - PubMed
  26. J Med Chem. 2020 Mar 12;63(5):2013-2027 - PubMed
  27. Cancer Cell. 2016 Apr 11;29(4):477-493 - PubMed
  28. N Engl J Med. 2011 Jun 30;364(26):2507-16 - PubMed
  29. Nature. 2015 Oct 22;526(7574):583-6 - PubMed
  30. N Engl J Med. 2019 Oct 24;381(17):1632-1643 - PubMed
  31. J Clin Oncol. 2021 Feb 1;39(4):285-294 - PubMed
  32. Science. 2013 Jul 5;341(6141):84-7 - PubMed
  33. Cancer Res. 2018 Mar 15;78(6):1537-1548 - PubMed
  34. J Mol Biol. 2007 Sep 21;372(3):774-97 - PubMed
  35. Cancer Res. 2013 Dec 1;73(23):7043-55 - PubMed
  36. Nat Biotechnol. 2011 Oct 30;29(11):1046-51 - PubMed
  37. Clin Cancer Res. 2016 Apr 1;22(7):1592-602 - PubMed
  38. Nature. 2013 Sep 12;501(7466):232-6 - PubMed
  39. J Chem Phys. 2020 Feb 28;152(8):084113 - PubMed
  40. Int J Cancer. 2011 Jul 1;129(1):245-55 - PubMed
  41. Nat Rev Cancer. 2009 Jan;9(1):28-39 - PubMed
  42. Cancer Cell. 2016 Sep 12;30(3):485-498 - PubMed
  43. Cell. 2015 Sep 10;162(6):1271-85 - PubMed
  44. Cell. 2018 Nov 1;175(4):1141-1155.e16 - PubMed
  45. Bioorg Med Chem Lett. 2011 Mar 1;21(5):1315-9 - PubMed
  46. Cell Chem Biol. 2018 Jul 19;25(7):916-924.e2 - PubMed
  47. Cell. 2012 Jul 20;150(2):251-63 - PubMed
  48. Nature. 2010 Sep 30;467(7315):596-9 - PubMed
  49. Lancet Oncol. 2018 May;19(5):603-615 - PubMed
  50. Science. 2019 Oct 4;366(6461):109-115 - PubMed
  51. Proteins. 2006 Nov 15;65(3):712-25 - PubMed
  52. J Mol Biol. 2002 Jul 12;320(3):597-608 - PubMed
  53. Cell Rep. 2015 Sep 29;12(12):1978-85 - PubMed
  54. Nucleic Acids Res. 2019 Jan 8;47(D1):D361-D366 - PubMed
  55. Cancer Cell. 2012 Nov 13;22(5):668-82 - PubMed
  56. Cancer Discov. 2012 Mar;2(3):227-35 - PubMed
  57. J Med Chem. 2013 Aug 22;56(16):6478-94 - PubMed
  58. Cancer Cell. 2015 Feb 9;27(2):240-56 - PubMed
  59. Cancer Cell. 2015 Sep 14;28(3):370-83 - PubMed
  60. Mol Cell. 2013 Feb 21;49(4):751-8 - PubMed
  61. Cell Rep. 2019 Jan 2;26(1):65-78.e5 - PubMed
  62. Trends Cancer. 2020 Sep;6(9):797-810 - PubMed
  63. Cancer Res. 2004 Oct 1;64(19):7099-109 - PubMed
  64. Nat Cell Biol. 2018 Sep;20(9):1064-1073 - PubMed
  65. N Engl J Med. 2012 Nov;367(18):1694-703 - PubMed
  66. N Engl J Med. 2014 Nov 13;371(20):1877-88 - PubMed
  67. Nat Med. 2018 May;24(4):512-517 - PubMed
  68. Proteins. 2004 May 1;55(2):351-67 - PubMed
  69. Proteins. 2010 Jun;78(8):1950-8 - PubMed
  70. Lancet Oncol. 2019 Aug;20(8):1070-1082 - PubMed

Publication Types

Grant support