Display options
Share it on

Sci Rep. 2021 Nov 29;11(1):23031. doi: 10.1038/s41598-021-02456-z.

Regulation of PP2A, PP4, and PP6 holoenzyme assembly by carboxyl-terminal methylation.

Scientific reports

Scott P Lyons, Elora C Greiner, Lauren E Cressey, Mark E Adamo, Arminja N Kettenbach

Affiliations

  1. Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
  2. Norris Cotton Cancer Center, Lebanon, NH, USA.
  3. Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA. [email protected].
  4. Norris Cotton Cancer Center, Lebanon, NH, USA. [email protected].

PMID: 34845248 PMCID: PMC8630191 DOI: 10.1038/s41598-021-02456-z

Abstract

The family of Phosphoprotein Phosphatases (PPPs) is responsible for most cellular serine and threonine dephosphorylation. PPPs achieve substrate specificity and selectivity by forming multimeric holoenzymes. PPP holoenzyme assembly is tightly controlled, and changes in the cellular repertoire of PPPs are linked to human disease, including cancer and neurodegeneration. For PP2A, PP4, and PP6, holoenzyme formation is in part regulated by carboxyl (C)-terminal methyl-esterification (often referred to as "methylation"). Here, we use mass spectrometry-based proteomics, methylation-ablating mutations, and genome editing to elucidate the role of C-terminal methylation on PP2A, PP4, and PP6 holoenzyme assembly. We find that the catalytic subunits of PP2A, PP4, and PP6 are frequently methylated in cancer cells and that deletion of the C-terminal leucine faithfully recapitulates loss of methylation. We observe that loss of PP2A methylation consistently reduced B55, B56, and B72 regulatory subunit binding in cancer and non-transformed cell lines. However, Striatin subunit binding is only affected in non-transformed cells. For PP4, we find that PP4R1 and PP4R3β bind in a methylation-dependent manner. Intriguingly, loss of methylation does not affect PP6 holoenzymes. Our analyses demonstrate in an unbiased, comprehensive, and isoform-specific manner the crucial regulatory function of endogenous PPP methylation in transformed and non-transformed cell lines.

© 2021. The Author(s).

References

  1. Elife. 2019 Mar 04;8: - PubMed
  2. Anal Chem. 2013 Dec 17;85(24):11710-4 - PubMed
  3. Science. 2014 Jan 3;343(6166):84-87 - PubMed
  4. J Biol Chem. 1994 Jan 21;269(3):1981-4 - PubMed
  5. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):6043-7 - PubMed
  6. Biochemistry. 2008 Feb 5;47(5):1442-51 - PubMed
  7. Sci Signal. 2015 Oct 13;8(398):rs12 - PubMed
  8. Cell Rep. 2020 Mar 3;30(9):3164-3170.e3 - PubMed
  9. Nat Methods. 2007 Mar;4(3):207-14 - PubMed
  10. Oncogene. 1997 Aug 18;15(8):911-7 - PubMed
  11. J Biol Chem. 2018 Jun 22;293(25):9636-9650 - PubMed
  12. Science. 2002 Dec 6;298(5600):1912-34 - PubMed
  13. J Biol Chem. 2007 Oct 19;282(42):30974-84 - PubMed
  14. FEBS J. 2013 Jan;280(2):324-45 - PubMed
  15. EMBO J. 2000 Nov 1;19(21):5672-81 - PubMed
  16. Anal Bioanal Chem. 2017 Jul;409(19):4615-4625 - PubMed
  17. Science. 2015 Jan 23;347(6220):1260419 - PubMed
  18. J Biol Chem. 2007 Sep 14;282(37):26971-26980 - PubMed
  19. Nat Cell Biol. 2010 Sep;12(9):886-93 - PubMed
  20. Proteomics. 2011 Sep;11(17):3572-7 - PubMed
  21. J Biol Chem. 2016 Sep 30;291(40):21008-21019 - PubMed
  22. Cancer Res. 2014 Aug 15;74(16):4295-305 - PubMed
  23. J Neurosci. 1997 Aug 1;17(15):5726-37 - PubMed
  24. Annu Rev Biochem. 2018 Jun 20;87:921-964 - PubMed
  25. FEBS Lett. 2005 Jun 13;579(15):3278-86 - PubMed
  26. J Biol Chem. 1994 Jun 10;269(23):16311-7 - PubMed
  27. J Neurochem. 2010 Dec;115(6):1455-65 - PubMed
  28. FEBS Open Bio. 2018 Aug 01;8(9):1486-1496 - PubMed
  29. J Neuropathol Exp Neurol. 2004 Oct;63(10):1080-91 - PubMed
  30. Mol Biol Cell. 2001 Jan;12(1):185-99 - PubMed
  31. Trends Biochem Sci. 2008 Mar;33(3):113-21 - PubMed
  32. Mol Cell Proteomics. 2018 Dec;17(12):2448-2461 - PubMed
  33. EMBO J. 2000 Nov 1;19(21):5682-91 - PubMed
  34. Anal Chem. 2014 Jul 15;86(14):7150-8 - PubMed
  35. Nat Methods. 2012 Jun 28;9(7):676-82 - PubMed
  36. Neoplasia. 2012 Jul;14(7):585-99 - PubMed
  37. Sci Signal. 2020 Jan 28;13(616): - PubMed
  38. J Biol Chem. 2003 Mar 7;278(10):8617-22 - PubMed
  39. Nucleic Acids Res. 2018 Jul 2;46(W1):W242-W245 - PubMed
  40. Biochem J. 1999 Apr 15;339 ( Pt 2):241-6 - PubMed
  41. J Neurochem. 1995 Dec;65(6):2804-7 - PubMed
  42. Cell. 2008 Apr 4;133(1):154-63 - PubMed
  43. Biochem J. 2001 Feb 1;353(Pt 3):417-39 - PubMed
  44. Nat Methods. 2011 Oct 02;8(11):937-40 - PubMed
  45. Cell Rep. 2020 Mar 3;30(9):3171-3182.e6 - PubMed
  46. J Biol Chem. 1999 May 14;274(20):14382-91 - PubMed
  47. J Biol Chem. 2006 Aug 11;281(32):22624-34 - PubMed
  48. Nat Methods. 2014 Aug;11(8):783-784 - PubMed
  49. Neuron. 1996 Dec;17(6):1201-7 - PubMed
  50. Proteomics. 2013 Jan;13(1):22-4 - PubMed
  51. Front Aging Neurosci. 2014 Aug 22;6:214 - PubMed
  52. J Biol Chem. 2001 Jan 12;276(2):1570-7 - PubMed
  53. Biochemistry. 1999 Dec 14;38(50):16539-47 - PubMed
  54. Cell. 2006 Dec 15;127(6):1239-51 - PubMed
  55. Sci Signal. 2020 Sep 08;13(648): - PubMed
  56. J Biol Chem. 1993 Sep 15;268(26):19192-5 - PubMed
  57. J Biol Chem. 2008 Oct 24;283(43):29273-84 - PubMed
  58. Nature. 2011 May 19;473(7347):337-42 - PubMed
  59. Curr Opin Cell Biol. 2000 Apr;12(2):180-5 - PubMed
  60. Sci Signal. 2017 Apr 11;10(474): - PubMed
  61. J Cell Biol. 2016 Aug 29;214(5):539-54 - PubMed
  62. Nucleic Acids Res. 2019 Jul 2;47(W1):W171-W174 - PubMed
  63. Biochem J. 1997 Oct 15;327 ( Pt 2):481-6 - PubMed
  64. EMBO J. 2020 Jul 1;39(13):e103695 - PubMed

Publication Types

Grant support