Display options
Share it on

Mol Reprod Dev. 2021 Nov 29; doi: 10.1002/mrd.23547. Epub 2021 Nov 29.

Sperm acrosome status before and during fertilization in the Chinese hamster (Cricetulus griseus), and observation of oviductal vesicles and globules.

Molecular reproduction and development

Hiroyuki Tateno, Miwa Tamura-Nakano, Hirokazu Kusakabe, Noritaka Hirohashi, Natsuko Kawano, Ryuzo Yanagimachi

Affiliations

  1. Department of Biological Sciences, Asahikawa Medical University, Asahikawa, Hokkaido, Japan.
  2. Communal Laboratory, Research Institute National Center for Global Health and Medicine, Tokyo, Japan.
  3. Department of Life Science, Shimane University, Matsue, Shimane, Japan.
  4. Department of Life Sciences, Meiji University, Kawasaki, Kanagawa, Japan.
  5. Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, University of Hawaii Medical School, Honolulu, Hawaii, USA.

PMID: 34845795 DOI: 10.1002/mrd.23547

Abstract

The present study was conducted to determine exact location where the acrosome reaction of fertilizing spermatozoa begins in the oviduct of the Chinese hamster. Unlike spermatozoa of other rodent species, Chinese hamster spermatozoa did not spontaneously undergo the acrosome reaction in fertilization-supporting media. In naturally mated females, spermatozoa in the uterus had intact acrosomes, whereas those in the lower oviductal isthmus had visibly thin acrosomal caps. The acrosomal cap was lost when spermatozoa passed through the cumulus oophorus. Thus, Chinese hamster spermatozoa begin the acrosome reaction in the lower isthmus and complete it in the cumulus oophorus. The mucosal epithelium of the oviductal isthmus released many "transparent" vesicles into the lumen, was very fragile and readily sloughed off by rough handling or rapid flushing with medium. Globular materials that oozed out of the dissected oviduct were most likely mucosa cells destroyed by rough handling. Although the oviducts of Chinese hamsters may be exceptionally delicate, this observation nevertheless warns us to cautiously handle the oviducts of any species when studying oviduct secretions that could be involved in inducing capacitation and the acrosome reaction of spermatozoa within the female genital tract.

© 2021 Wiley Periodicals LLC.

Keywords: Chinese hamster sperm; acrosome reaction; cumulus oophorus; oviduct isthmus; oviduct secretion

References

  1. Al-Dossary, A. A., & Martin-DeLeon, P. A. (2016). Role of exosomes in the reproductive tract oviductosomes mediate interactions of oviductal secretion with gametes/early embryo. Frontiers in Bioscience (Landmark Edition), 21(6), 1278-1285. https://doi.org/10.2741/4456 - PubMed
  2. Baba, T., Azuma, S., Kashiwabara, S., & Toyoda, Y. (1994). Sperm from mice carrying a targeted mutation of the acrosin gene can penetrate the oocyte zona pellucida and effect fertilization. Journal of Biological Chemistry, 269(50), 31845-31849. https://doi.org/10.1016/S0021-9258(18)31772-1 - PubMed
  3. Cummins, J. M., & Woodall, P. F. (1985). On mammalian sperm dimensions. Journal of Reproduction and Fertility, 75(1), 153-175. https://doi.org/10.1530/jrf.0.0750153 - PubMed
  4. Cummins, J. M., & Yanagimachi, R. (1982). Sperm-egg ratios and the site of the acrosome reaction during in vivo fertilization in the hamster. Gamete Research, 5(3), 239-256. https://doi.org/10.1002/mrd.1120050304 - PubMed
  5. Fazeli, A., Hage, W. J., Cheng, F.-P., Voorhout, W. F., Marks, A., Bevers, M. M., & Colenbrander, B. (1997). Acrosome-intact bore spermatozoa initiate binding to the homologous zona pellucida in vitro. Biology of Reproduction, 56(2), 430-438. https://doi.org/10.1095/biolreprod56.2.430 - PubMed
  6. Ferraz, M. A. M. M., Carothers, A., Dahal, R., Noonan, M. J., & Songsasen, N. (2019). Oviductal extracellular vesicles interact with the spermatozoon's head and mid-piece and improves its motility and fertilizing ability in the domestic cat. Scientific Reports, 9(1), 9484. https://doi.org/10.1038/s41598-019-45857-x - PubMed
  7. Florman, H. M., & Storey, B. T. (1982). Mouse gamete interactions: The zona pellucida is the site of the acrosome reaction leading to fertilization in vitro. Developmental Biology, 91(1), 121-130. https://doi.org/10.1016/0012-1606(82)90015-X - PubMed
  8. Franchi, A., Moreno-Irusta, A., Domínguez, E. M., Adre, A. J., & Giojalas, L. C. (2020). Extracellular vesicles from oviductal isthmus and ampulla stimulate the induced acrosome reaction and signaling events associated with capacitation in bovine spermatozoa. Journal of Cellular Biochemistry, 121(4), 2877-2888. https://doi.org/10.1002/jcb.29522 - PubMed
  9. Hino, T., Muro, Y., Tamura-Nakano, M., Okabe, M., Tateno, H., & Yanagimachi, R. (2016). The behavior and acrosomal status of mouse spermatozoa in vitro, and within the oviduct during fertilization after natural mating. Biology of Reproduction, 95(3), 1-11. https://doi.org/10.1095/biolreprod.116.140400 - PubMed
  10. Hirose, M., Honda, A., Fulka, H., Tamura-Nakano, M., Matoba, S., Tomishima, T., Mochida, K., Hasegawa, A., Nagashima, K., Inoue, K., Ohtsuka, M., Baba, T., Yanagimachi, R., & Ogura, A. (2020). Acrosin is essential for sperm penetration through the zona pellucida in hamsters. Proceedings of the National Academy of Sciences of the United State of America, 117(5), 2513-2518. https://doi.org/10.1073/pnas.1917595117 - PubMed
  11. Hollis, D. E., Frith, P. A., Vaughan, J. D., Chapman, R. E., & Nancarrow, C. D. (1984). Ultrastructural changes in the oviductal epithelium of merino ewes during the estrous cycle. The American Journal of Anatomy, 171(4), 441-456. https://doi.org/10.1002/aja.1001710408 - PubMed
  12. Hsu, P.-C., Hsu, C.-C., & Guo, Y. L. (1999). Hydrogen peroxide induces premature acrosome reaction in rat sperm and reduces their penetration of the zona pellucida. Toxicology, 139(1-2), 93-101. https://doi.org/10.1016/S0300-483X(99)00107-9 - PubMed
  13. Inoue, N., Ikawa, M., Nakanishi, T., Matsumoto, M., Nomura, M., Seya, T., & Okabe, M. (2003). Disruption of mouse CD46 causes an accelerated spontaneous acrosome reaction in sperm. Molecular and Cellular Biology, 23(7), 2614-2622. https://doi.org/10.1128/MCB.23.7.2614-2622.2003 - PubMed
  14. Jansen, R. P. S., & Bajpai, V. K. (1982). Oviduct acid mucus glycoproteins in the estrous rabbit: Ultrastructure and histochemistry. Biology of Reproduction, 26(1), 155-168. https://doi.org/10.1095/biolreprod26.1.155 - PubMed
  15. Jin, M., Fujiwara, E., Kakiuchi, Y., Okabe, M., Satouh, Y., Baba, S. A., Chiba, K., & Hirohashi, N. (2011). Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proceedings of the National Academy of Sciences of the United State of America, 108(12), 4892-4896. https://doi.org/10.1073/pnas.1018202108 - PubMed
  16. La Spina, F. A., Puga Molina, L. C., Romarowski, A., Vitale, A. M., Falzone, T. L., Krapf, D., Hirohashi, N., & Buffone, M. G. (2016). Mouse sperm begin to undergo acrosomal exocytosis in the upper isthmus of the oviduct. Developmental Biology, 411(2), 172-182. https://doi.org/10.1016/j.ydbio.2016.02.006 - PubMed
  17. Liu, D. Y., & Baker, H. W. G. (1993). Inhibition of acrosin activity with a trypsin inhibitor blocks human sperm penetration of the zona pellucida. Biology of Reproduction, 48(2), 340-348. https://doi.org/10.1095/biolreprod48.2.340 - PubMed
  18. Mikamo, K., & Kamiguchi, Y. (1983). A new assessment system for chromosomal mutagenicity using oocytes and early zygotes of the Chinese hamster. In (Eds.) Ishihara, T. & Sasaki, M. S., Radiation-induced Chromosome Damage in Man (pp. 411-432). Alan R Liss. - PubMed
  19. Miki, K., & Clapham, D. E. (2013). Rheotaxis guides mammalian sperm. Current Biology, 23(6), 443-452. https://doi.org/10.1016/j.cub.2013.02.007 - PubMed
  20. Mortimer, D., Curtis, E. F., Camenzind, A. R., & Tanaka, S. (1989). The spontaneous acrosome reaction of human spermatozoa incubated in vitro. Human Reproduction, 4(1), 57-62. https://doi.org/10.1093/oxfordjournals.humrep.a136846 - PubMed
  21. Oehninger, S. (2003). Biochemical and functional characterization of the human zona pellucida. Reproductive BioMedicine Online, 7(6), 641-648. https://doi.org/10.1016/S1472-6483(10)62086-X - PubMed
  22. Ou, M. C. (1994). Acrosome reaction in the head-attached human sperm. Andrologia, 26(1), 17-20. https://doi.org/10.1111/j.1439-0272.1994.tb00747.x - PubMed
  23. Parkening, T. A., & Cisneros, P. L. (1988). Fertilization of Chinese hamster ova in vitro and in vivo and their subsequent development in culture. Biology of Reproduction, 39(2), 409-418. https://doi.org/10.1095/biolreprod39.2.409 - PubMed
  24. Saling, P. M., Sowinski, J., & Storey, B. T. (1979). An ultrastructural study of epididymal mouse spermatozoa binding to zonae pellucidae in vitro: Sequential relationship to the acrosome reaction. The Journal of Experimental Zoology, 209(2), 229-238. https://doi.org/10.1002/jez.1402090205 - PubMed
  25. Suarez, S. S. (1987). Sperm transport and motility in the mouse oviduct: Observations in situ. Biology of Reproduction, 36(1), 203-210. https://doi.org/10.1095/biolreprod36.1.203 - PubMed
  26. Suarez, S. S. (2008). Regulation of sperm storage and movement in the mammalian oviduct. The International Journal of Developmental Biology, 52(5-6), 455-462. https://doi.org/10.1387/ijdb.072527ss - PubMed
  27. Tateno, H. (2010). Chromosome analysis of mouse zygotes produced by intracytoplasmic injection of spermatozoa exposed to acrosome reaction inducing agents methyl-β-cyclodextrin and calcium ionophore A23187. Journal Of Assisted Reproduction And Genetics, 27(1), 41-47. https://doi.org/10.1007/s10815-009-9381-z - PubMed
  28. Tateno, H. (2011). Establishment of in vitro fertilization technique with cholesterol-removed spermatozoa in the Chinese hamster. Asahikawa Medical University Research Bulletin, 11, 84-86. - PubMed
  29. Tateno, H., & Kamiguchi, Y. (1996). In vitro fertilisation of Chinese hamster oocytes by spermatozoa that have undergone ionophore A23187-induced acrosome reaction, and their subsequent development into blastocysts. Zygote, 4(2), 93-99. https://doi.org/10.1017/s0967199400002963 - PubMed
  30. Tateno, H., & Kamiguchi, Y. (2007). Evaluation of chromosomal risk following intracytoplasmic sperm injection in the mouse. Biology of Reproduction, 77(2), 336-342. https://doi.org/10.1095/biolreprod.106.057778 - PubMed
  31. Tollner, T. L., Yudin, A. I., Cherr, G. N., & Overstreet, J. W. (2003). Real-time observations of individual macaque sperm undergoing tight binding and the acrosome reaction on the zona pellucida. Biology of Reproduction, 68(2), 664-672. https://doi.org/10.1095/biolreprod.102.009175 - PubMed
  32. Toyoda, Y., Yokoyama, M., & Hosi, T. (1971). Studies on the fertilization of mouse eggs in vitro: I. In vitro fertilization of eggs by fresh epididymal mouse sperm. Japanese Journal of Animal Reproduction, 16(4), 147-151. https://doi.org/10.1262/jrd1955.16.147 - PubMed
  33. Tummon, I. S., Yuzpe, A. A., Daniel, S. A. J., & Deutsch, A. (1991). Total acrosin activity correlates with fertility potential after fertilization in vitro. Fertility and Sterility, 56(5), 933-938. https://doi.org/10.1016/S0015-0282(16)54668-8 - PubMed
  34. Yanagimachi, R. (1969). In vitro acrosome reaction and capacitation of golden hamster spermatozoa by bovine follicular fluid and its fractions. Journal of Experimental Zoology, 170(3), 269-280. https://doi.org/10.1002/jez.1401700304 - PubMed
  35. Yanagimachi, R. (1982). In vitro sperm capacitation and fertilization of golden hamster eggs in a chemically defined medium. In (Eds.) Hafez, E. S. E. & Semm, K., In Vitro Fertilization and Embryo Transfer (pp. 65-76). MTP Press. - PubMed
  36. Yanagimachi, R. (1994). Mammalian fertilization. In (eds.) Knobil, E. & Neill, J. D., The Physiology of Reproduction (2nd ed., pp. 189-317). Raven Press. - PubMed
  37. Yanagimachi, R., Kamiguchi, Y., Sugawara, S., & Mikamo, K. (1983). Gametes and fertilization in the Chinese hamster. Gamete Research, 8(2), 97-117. https://doi.org/10.1002/mrd.1120080202 - PubMed
  38. Yanagimachi, R., & Mahi, C. A. (1976). The sperm acrosome reaction and fertilization in the guinea-pig: A study in vivo. Journal of Reproduction and Fertility, 46(1), 49-54. https://doi.org/10.1530/jrf.0.0460049 - PubMed
  39. Yanagimachi, R., & Usui, N. (1974). Calcium dependence of the acrosome reaction and activation of guinea pig spermatozoa. Experimental Cell Research, 89(1), 161-174. https://doi.org/10.1016/0014-4827(74)90199-2 - PubMed

Publication Types

Grant support