Display options
Share it on

Nat Commun. 2021 Nov 18;12(1):6697. doi: 10.1038/s41467-021-27036-7.

Phosphorylation activates the yeast small heat shock protein Hsp26 by weakening domain contacts in the oligomer ensemble.

Nature communications

Moritz Mühlhofer, Carsten Peters, Thomas Kriehuber, Marina Kreuzeder, Pamina Kazman, Natalia Rodina, Bernd Reif, Martin Haslbeck, Sevil Weinkauf, Johannes Buchner

Affiliations

  1. Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747, Garching, Germany.
  2. Boehringer Ingelheim, Birkendorfer Str. 65, 88397, Biberach an der Riß, Germany.
  3. Ludwig-Maximilians-Universität München, Biozentrum Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany.
  4. Roche Diagnostics, Nonnenwald 2, 82377, Penzberg, Germany.
  5. BNMRZ, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 2, 85747, Garching, Germany.
  6. Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
  7. Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747, Garching, Germany. [email protected].

PMID: 34795272 PMCID: PMC8602628 DOI: 10.1038/s41467-021-27036-7

Abstract

Hsp26 is a small heat shock protein (sHsp) from S. cerevisiae. Its chaperone activity is activated by oligomer dissociation at heat shock temperatures. Hsp26 contains 9 phosphorylation sites in different structural elements. Our analysis of phospho-mimetic mutations shows that phosphorylation activates Hsp26 at permissive temperatures. The cryo-EM structure of the Hsp26 40mer revealed contacts between the conserved core domain of Hsp26 and the so-called thermosensor domain in the N-terminal part of the protein, which are targeted by phosphorylation. Furthermore, several phosphorylation sites in the C-terminal extension, which link subunits within the oligomer, are sensitive to the introduction of negative charges. In all cases, the intrinsic inhibition of chaperone activity is relieved and the N-terminal domain becomes accessible for substrate protein binding. The weakening of domain interactions within and between subunits by phosphorylation to activate the chaperone activity in response to proteotoxic stresses independent of heat stress could be a general regulation principle of sHsps.

© 2021. The Author(s).

References

  1. Biophys J. 2000 Mar;78(3):1606-19 - PubMed
  2. Commun Biol. 2019 Jun 19;2:218 - PubMed
  3. Nature. 1998 Aug 6;394(6693):595-9 - PubMed
  4. Elife. 2016 Nov 15;5: - PubMed
  5. FASEB J. 2010 Oct;24(10):3633-42 - PubMed
  6. Genes Dev. 2009 Aug 15;23(16):1929-43 - PubMed
  7. J Mol Biol. 2008 Jan 25;375(4):1040-51 - PubMed
  8. J Biol Chem. 1997 Nov 21;272(47):29511-7 - PubMed
  9. J Biol Chem. 2020 Aug 7;295(32):11099-11117 - PubMed
  10. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 - PubMed
  11. Nat Biotechnol. 2020 Mar;38(3):365-373 - PubMed
  12. J Mol Biol. 2005 Jul 29;350(5):1083-93 - PubMed
  13. Science. 2009 Sep 25;325(5948):1682-6 - PubMed
  14. Nat Commun. 2016 Nov 30;7:13673 - PubMed
  15. J Biol Chem. 2013 Nov 1;288(44):31646-54 - PubMed
  16. Nat Methods. 2017 Mar;14(3):290-296 - PubMed
  17. Cell. 1986 Jun 20;45(6):885-94 - PubMed
  18. Microbiol Mol Biol Rev. 2002 Mar;66(1):64-93; table of contents - PubMed
  19. Int J Biochem Cell Biol. 2012 Oct;44(10):1588-92 - PubMed
  20. Biochemistry. 2012 Aug 7;51(31):6127-38 - PubMed
  21. Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10364-9 - PubMed
  22. Cell Stress Chaperones. 2017 Jul;22(4):493-502 - PubMed
  23. EMBO J. 1999 Dec 1;18(23):6744-51 - PubMed
  24. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10449-53 - PubMed
  25. Nat Protoc. 2010 Apr;5(4):725-38 - PubMed
  26. Protein Sci. 2013 Apr;22(4):367-80 - PubMed
  27. Annu Rev Genet. 1988;22:631-77 - PubMed
  28. J Proteome Res. 2016 Aug 5;15(8):2863-70 - PubMed
  29. Yeast. 1992 Feb;8(2):95-106 - PubMed
  30. BMC Genomics. 2010 Dec 02;11:685 - PubMed
  31. Sci Signal. 2010 Dec 21;3(153):rs4 - PubMed
  32. J Biol Chem. 2010 Apr 23;285(17):12803-12 - PubMed
  33. J Biol Chem. 1993 Jan 25;268(3):1517-20 - PubMed
  34. J Biol Chem. 2003 Mar 21;278(12):10361-7 - PubMed
  35. Mol Microbiol. 2003 Oct;50(2):585-95 - PubMed
  36. J Mol Biol. 2009 Feb 6;385(5):1481-97 - PubMed
  37. J Mol Evol. 1995 Mar;40(3):238-48 - PubMed
  38. Cell Mol Life Sci. 2009 Jan;66(1):62-81 - PubMed
  39. J Chem Phys. 2020 Jul 28;153(4):044130 - PubMed
  40. Exp Eye Res. 2003 Feb;76(2):145-53 - PubMed
  41. Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20407-12 - PubMed
  42. Int J Mol Sci. 2019 Aug 28;20(17): - PubMed
  43. Structure. 2006 Jul;14(7):1197-204 - PubMed
  44. Adv Protein Chem. 2001;59:105-56 - PubMed
  45. J Cell Biol. 2011 Nov 14;195(4):617-29 - PubMed
  46. J Struct Biol. 1996 Jan-Feb;116(1):17-24 - PubMed
  47. Biophys J. 2006 Jun 15;90(12):4651-61 - PubMed
  48. J Biol Chem. 2017 Jan 13;292(2):672-684 - PubMed
  49. FEBS Lett. 2013 Jun 27;587(13):1959-69 - PubMed
  50. Mol Cell. 2008 Feb 1;29(2):207-16 - PubMed
  51. Nat Struct Mol Biol. 2015 Nov;22(11):898-905 - PubMed
  52. Cell Stress Chaperones. 2017 Jul;22(4):601-611 - PubMed
  53. Biochem J. 2007 Jan 1;401(1):129-41 - PubMed
  54. Mol Cell Proteomics. 2008 Jul;7(7):1389-96 - PubMed
  55. Nat Biotechnol. 2002 Mar;20(3):301-5 - PubMed
  56. J Proteome Res. 2015 May 1;14(5):2190-8 - PubMed
  57. Front Genet. 2014 Oct 06;5:346 - PubMed
  58. Nat Protoc. 2007;2(8):1896-906 - PubMed
  59. Chem Biol. 2010 Sep 24;17(9):1008-17 - PubMed
  60. J Mol Biol. 2009 Oct 9;392(5):1242-52 - PubMed
  61. J Mol Biol. 2010 Apr 23;398(1):122-31 - PubMed
  62. Nat Struct Biol. 2001 Dec;8(12):1025-30 - PubMed
  63. J Biol Chem. 2019 Feb 8;294(6):2121-2132 - PubMed
  64. Nat Protoc. 2018 Dec;13(12):2864-2889 - PubMed
  65. Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20491-6 - PubMed
  66. Nucleic Acids Res. 2019 Jan 8;47(D1):D442-D450 - PubMed
  67. EMBO J. 2004 Feb 11;23(3):638-49 - PubMed
  68. J Mol Biol. 2015 Apr 10;427(7):1537-48 - PubMed
  69. J Struct Biol. 2005 Oct;152(1):36-51 - PubMed
  70. FEBS Lett. 2013 Apr 17;587(8):1073-80 - PubMed
  71. J Mol Biol. 2011 Aug 5;411(1):110-22 - PubMed
  72. Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21 - PubMed
  73. Eur J Biochem. 2004 Apr;271(8):1426-36 - PubMed
  74. J Biol Chem. 2005 Jun 24;280(25):23861-8 - PubMed
  75. J Biol Chem. 2001 Feb 16;276(7):5346-52 - PubMed
  76. J Mol Evol. 1992 Dec;35(6):537-45 - PubMed
  77. Nat Struct Mol Biol. 2019 Dec;26(12):1141-1150 - PubMed
  78. Nat Struct Mol Biol. 2005 Oct;12(10):842-6 - PubMed
  79. Prog Mol Subcell Biol. 2002;28:1-17 - PubMed
  80. J Biol Chem. 2005 Jun 24;280(25):23869-75 - PubMed
  81. J Biol Chem. 2003 May 16;278(20):18015-21 - PubMed
  82. Mol Syst Biol. 2015 Jun 03;11(6):813 - PubMed
  83. Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):E3780-9 - PubMed
  84. Mol Cell. 2012 Feb 24;45(4):517-28 - PubMed
  85. Mol Cell Biol. 1990 Dec;10(12):6362-73 - PubMed
  86. J Mol Biol. 2004 Oct 15;343(2):445-55 - PubMed
  87. Mol Cell. 2015 Jun 18;58(6):1067-78 - PubMed
  88. Curr Protoc Bioinformatics. 2014 Sep 08;47:5.6.1-32 - PubMed
  89. Biochemistry. 2009 May 12;48(18):3828-37 - PubMed
  90. Trends Biochem Sci. 2008 Aug;33(8):351-2 - PubMed
  91. Sci Rep. 2018 Jan 12;8(1):688 - PubMed
  92. J Struct Biol. 2007 Jan;157(1):281-7 - PubMed
  93. Cold Spring Harb Perspect Biol. 2019 Oct 1;11(10): - PubMed
  94. J Proteome Res. 2012 Apr 6;11(4):2397-408 - PubMed
  95. Cell Rep. 2019 Dec 24;29(13):4593-4607.e8 - PubMed
  96. J Mol Biol. 2011 Apr 22;408(1):118-34 - PubMed

Publication Types