Display options
Share it on

Nucleic Acids Res. 2021 Oct 11;49(18):10770-10784. doi: 10.1093/nar/gkab793.

Novel anti-repression mechanism of H-NS proteins by a phage protein.

Nucleic acids research

Fredj Ben Bdira, Amanda M Erkelens, Liang Qin, Alexander N Volkov, Andrew M Lippa, Nicholas Bowring, Aimee L Boyle, Marcellus Ubbink, Simon L Dove, Remus T Dame

Affiliations

  1. Department of Macromolecular Biochemistry, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
  2. Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
  3. VIB-VUB Structural Biology Research Center, Pleinlaan 2, 1050 Brussels, Belgium.
  4. Jean Jeener NMR Centre, VUB, Pleinlaan 2, 1050 Brussels, Belgium.
  5. Boston Children's Hospital, Division of Infectious Diseases, Harvard Medical School, Boston, MA 02115, USA.

PMID: 34520554 PMCID: PMC8501957 DOI: 10.1093/nar/gkab793

Abstract

H-NS family proteins, bacterial xenogeneic silencers, play central roles in genome organization and in the regulation of foreign genes. It is thought that gene repression is directly dependent on the DNA binding modes of H-NS family proteins. These proteins form lateral protofilaments along DNA. Under specific environmental conditions they switch to bridging two DNA duplexes. This switching is a direct effect of environmental conditions on electrostatic interactions between the oppositely charged DNA binding and N-terminal domains of H-NS proteins. The Pseudomonas lytic phage LUZ24 encodes the protein gp4, which modulates the DNA binding and function of the H-NS family protein MvaT of Pseudomonas aeruginosa. However, the mechanism by which gp4 affects MvaT activity remains elusive. In this study, we show that gp4 specifically interferes with the formation and stability of the bridged MvaT-DNA complex. Structural investigations suggest that gp4 acts as an 'electrostatic zipper' between the oppositely charged domains of MvaT protomers, and stabilizes a structure resembling their 'half-open' conformation, resulting in relief of gene silencing and adverse effects on P. aeruginosa growth. The ability to control H-NS conformation and thereby its impact on global gene regulation and growth might open new avenues to fight Pseudomonas multidrug resistance.

© The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.

References

  1. Mol Microbiol. 1996 Aug;21(3):567-78 - PubMed
  2. Environ Microbiol. 2009 Nov;11(11):2789-805 - PubMed
  3. Nucleic Acids Res. 2020 Feb 28;48(4):2156-2172 - PubMed
  4. Nat Rev Microbiol. 2013 May;11(5):349-55 - PubMed
  5. Virology. 2008 Aug 1;377(2):233-8 - PubMed
  6. Genes Dev. 2007 Jun 15;21(12):1456-71 - PubMed
  7. Mol Microbiol. 2005 May;56(4):858-70 - PubMed
  8. J Mol Microbiol Biotechnol. 2014;24(5-6):344-59 - PubMed
  9. Gene. 1998 May 28;212(1):77-86 - PubMed
  10. J Magn Reson. 2003 Jan;160(1):65-73 - PubMed
  11. Methods Mol Biol. 2018;1837:199-209 - PubMed
  12. Proteins. 2005 Jun 1;59(4):687-96 - PubMed
  13. Annu Rev Microbiol. 2016 Sep 8;70:199-213 - PubMed
  14. Biochemistry. 1994 Mar 8;33(9):2363-72 - PubMed
  15. J Biol Chem. 2015 Aug 28;290(35):21200-12 - PubMed
  16. J Biomol NMR. 2015 Aug;62(4):453-71 - PubMed
  17. J Bacteriol. 2011 Sep;193(18):4881-92 - PubMed
  18. Nature. 1989 Aug 10;340(6233):467-8 - PubMed
  19. Bioinformatics. 2015 Apr 15;31(8):1325-7 - PubMed
  20. PLoS One. 2014 Nov 05;9(11):e112246 - PubMed
  21. Comput Struct Biotechnol J. 2019 Jun 14;17:746-756 - PubMed
  22. Nucleic Acids Res. 2018 Jun 20;46(11):5525-5546 - PubMed
  23. Trends Microbiol. 2015 Feb;23(2):67-9 - PubMed
  24. Elife. 2017 Sep 26;6: - PubMed
  25. Bioessays. 2011 Jan;33(1):43-51 - PubMed
  26. J Magn Reson. 2010 Feb;202(2):223-33 - PubMed
  27. J Mol Biol. 2019 Nov 22;431(23):4670-4683 - PubMed
  28. Elife. 2015 Jan 16;4: - PubMed
  29. PLoS Genet. 2010 Nov 11;6(11):e1001207 - PubMed
  30. Nat Commun. 2013;4:2087 - PubMed
  31. Microbiol Mol Biol Rev. 2000 Mar;64(1):69-114 - PubMed
  32. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905-21 - PubMed
  33. Proc Natl Acad Sci U S A. 2012 May 22;109(21):8050-5 - PubMed
  34. J Biol Chem. 2014 Sep 26;289(39):27046-27054 - PubMed
  35. Front Microbiol. 2015 Nov 06;6:1242 - PubMed
  36. Mol Microbiol. 2021 Jun;115(6):1138-1151 - PubMed
  37. Proc Natl Acad Sci U S A. 2011 Nov 1;108(44):17957-62 - PubMed
  38. J Bacteriol. 2004 Jun;186(12):3677-86 - PubMed
  39. DNA Res. 2013 Jun;20(3):263-71 - PubMed
  40. Viruses. 2021 Jan 09;13(1): - PubMed
  41. Mol Microbiol. 2005 Feb;55(3):808-27 - PubMed
  42. Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18947-52 - PubMed
  43. J Biomol NMR. 1995 Nov;6(3):277-93 - PubMed
  44. J Bacteriol. 2005 Mar;187(5):1845-8 - PubMed
  45. J Comput Chem. 2008 Aug;29(11):1859-65 - PubMed
  46. Nat Protoc. 2015 Nov;10(11):1820-41 - PubMed
  47. Nucleic Acids Res. 2012 Oct;40(18):8942-52 - PubMed
  48. J Mol Biol. 2016 Feb 22;428(4):720-725 - PubMed
  49. Nucleic Acids Res. 2000 Sep 15;28(18):3504-10 - PubMed
  50. J Biol Chem. 2013 May 10;288(19):13356-69 - PubMed
  51. Nat Rev Genet. 2020 Apr;21(4):227-242 - PubMed
  52. Nucleic Acids Res. 2015 Jul 1;43(W1):W389-94 - PubMed
  53. Nature. 2006 Nov 16;444(7117):387-90 - PubMed
  54. Nucleic Acids Res. 2013 May 1;41(10):5263-72 - PubMed
  55. Appl Environ Microbiol. 2016 Oct 27;82(22):6715-6727 - PubMed
  56. Mol Microbiol. 2010 Nov;78(4):916-31 - PubMed
  57. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1761-5 - PubMed
  58. Gene. 1993 Apr 15;126(1):93-7 - PubMed
  59. J Bacteriol. 2008 Nov;190(21):7052-9 - PubMed
  60. Microbiology (Reading). 2008 Sep;154(Pt 9):2533-2545 - PubMed
  61. J Bacteriol. 2006 Oct;188(19):6924-31 - PubMed
  62. Adv Microb Physiol. 2016;69:157-186 - PubMed
  63. PLoS One. 2011;6(5):e20095 - PubMed
  64. Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11082-7 - PubMed
  65. Open Biol. 2019 Dec;9(12):190223 - PubMed
  66. Nat Methods. 2009 May;6(5):343-5 - PubMed
  67. J Theor Biol. 2010 Oct 21;266(4):550-9 - PubMed
  68. Nat Rev Microbiol. 2010 Mar;8(3):185-95 - PubMed
  69. Nat Rev Microbiol. 2017 Sep;15(9):517-530 - PubMed

Publication Types

Grant support