Display options
Share it on

Immun Inflamm Dis. 2022 Jan;10(1):3-21. doi: 10.1002/iid3.538. Epub 2021 Oct 01.

Multidirectional facets of obesity management in the metabolic syndrome population after liver transplantation.

Immunity, inflammation and disease

Kinga Czarnecka, Paulina Czarnecka, Olga Tronina, Teresa Bączkowska, Magdalena Durlik

Affiliations

  1. Department of Transplant Medicine, Nephrology and Internal Diseases, Medical University of Warsa, Warsaw, Poland.

PMID: 34598315 DOI: 10.1002/iid3.538

Abstract

The obesity pandemic has resulted in an increasing demand for liver transplantation and has significantly altered the profile of liver transplant candidates in addition to affecting posttransplantation outcomes. In this review, we discuss a broad range of clinical approaches that warrant attention to provide comprehensive and patient-centred medical care to liver transplant recipients, and to be prepared to confront the rapidly changing clinical challenges and ensuing dilemmas. Adipose tissue is a complex and metabolically active organ. Visceral fat deposition is a key predictor of overall obesity-related morbidity and mortality. Limited pharmacological options are available for the treatment of obesity in the liver transplant population. Bariatric surgery may be an alternative in eligible patients. The rapidly increasing prevalence of nonalcoholic fatty liver disease (NAFLD) is a global concern; NAFLD affects both pre- and posttransplantation outcomes. Numerous studies have investigated pharmacological and nonpharmacological management of NAFLD and some of these have shown promising results. Liver transplant recipients are constantly exposed to numerous factors that result in intestinal microbiota alterations, which were linked to the development of obesity, diabetes type 2, metabolic syndrome (MS), NAFLD, and hepatocellular cancer. Microbiota modifications with probiotics and prebiotics bring gratifying results in the management of metabolic complications. Fecal microbiota transplantation (FMT) is successfully performed in many medical indications. However, the safety and efficacy profiles of FMT in immunocompromised patients remain unclear. Obesity together with immunosuppressive treatment, may affect the pharmacokinetic and/or pharmacodynamic properties of coadministered medications. Individualized immunosuppressive regimens are recommended following liver transplantation to address possible metabolic concerns. Effective and comprehensive management of metabolic complications is shown to yield multiple beneficial results in the liver transplant population and may bring gratifying results in improving long-term survival rates.

© 2021 The Authors. Immunity, Inflammation and Disease published by John Wiley & Sons Ltd.

Keywords: gastrointestinal microbiome; liver transplant; metabolic syndrome; nonalcoholic fatty liver disease; obesity management; visceral obesity

References

  1. Moore JX, Chaudhary N, Akinyemiju T. Metabolic syndrome prevalence by race/ethnicity and sex in the united states, national health and nutrition examination survey, 1988-2012. Prev Chronic Dis. 2017;14(3):24. https://doi.org/10.5888/pcd14.160287 - PubMed
  2. Laryea M, Watt KD, Molinari M, et al. Metabolic syndrome in liver transplant recipients: prevalence and association with major vascular events. Liver Transplant. 2007;13(8):1109-1114. https://doi.org/10.1002/lt.21126 - PubMed
  3. Watt KDS, Pedersen RA, Kremers WK, Heimbach JK, Charlton MR. Evolution of causes and risk factors for mortality post-liver transplant: results of the NIDDK long-term follow-up study. Am J Transplant. 2010;10(6):1420-1427. https://doi.org/10.1111/j.1600-6143.2010.03126.x - PubMed
  4. Hanouneh IA, Feldstein AE, McCullough AJ, et al. The significance of metabolic syndrome in the setting of recurrent hepatitis C after liver transplantation. Liver Transplant. 2008;14(9):1287-1293. https://doi.org/10.1002/lt.21524 - PubMed
  5. Ishii H, Horie Y, Yamagishi Y, Ebinuma H. Alcoholic liver disease and its relationship with metabolic syndrome. Japan Med Assoc J. 2010;53(4):236-242. - PubMed
  6. Wong GL, Chan HL, Yu Z, et al. Coincidental metabolic syndrome increases the risk of liver fibrosis progression in patients with chronic hepatitis B-a prospective cohort study with paired transient elastography examinations. Aliment Pharmacol Ther. 2014;39(8):883-893. https://doi.org/10.1111/apt.12658 - PubMed
  7. Petta S, Eslam M, Valenti L, et al. Metabolic syndrome and severity of fibrosis in nonalcoholic fatty liver disease: an age-dependent risk profiling study. Liver Int. 2017;37(9):1389-1396. https://doi.org/10.1111/liv.13397 - PubMed
  8. Mantovani A, Targher G. Type 2 diabetes mellitus and risk of hepatocellular carcinoma: spotlight on nonalcoholic fatty liver disease. Ann Transl Med. 2017;5(13):270. https://doi.org/10.21037/atm.2017.04.41 - PubMed
  9. Polesel J, Zucchetto A, Montella M, et al. The impact of obesity and diabetes mellitus on the risk of hepatocellular carcinoma. Ann Oncol. 2009;20(2):353-357. https://doi.org/10.1093/annonc/mdn565 - PubMed
  10. Ohki T, Tateishi R, Sato T, et al. Obesity is an independent risk factor for hepatocellular carcinoma development in chronic hepatitis c patients. Clin Gastroenterol Hepatol. 2008;6(4):459-464. https://doi.org/10.1016/j.cgh.2008.02.012 - PubMed
  11. Cleeman JI. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). J Am Med Assoc. 2001;285(19):2486-2497. https://doi.org/10.1001/jama.285.19.2486 - PubMed
  12. Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation. 2005;112(17):2735-2752. https://doi.org/10.1161/CIRCULATIONAHA.105.169404 - PubMed
  13. Alberti KGMM, Zimmet P, Shaw J. Metabolic syndrome-a new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet Med. 2006;23(5):469-480. https://doi.org/10.1111/j.1464-5491.2006.01858.x - PubMed
  14. Alberti KGMM, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; International. Circulation. 2009;120(16):1640-1645. https://doi.org/10.1161/CIRCULATIONAHA.109.192644 - PubMed
  15. Laish I, Braun M, Mor E, Sulkes J, Harif Y, Ari ZB. Metabolic syndrome in liver transplant recipients: prevalence, risk factors, and association with cardiovascular events. Liver Transplant. 2011;17(1):15-22. https://doi.org/10.1002/lt.22198 - PubMed
  16. Kallwitz ER, Loy V, Mettu P, Von Roenn N, Berkes J, Cotler SJ. Physical activity and metabolic syndrome in liver transplant recipients. Liver Transplant. 2013;19(10):1125-1131. https://doi.org/10.1002/lt.23710 - PubMed
  17. Anastácio LR, Diniz KG, Ribeiro HS, et al. Prospective evaluation of metabolic syndrome and its components among long-term liver recipients. Liver Int. 2014;34(7):1094-1101. https://doi.org/10.1111/liv.12495 - PubMed
  18. Bianchi G, Marchesini G, Marzocchi R, Pinna AD, Zoli M. Metabolic syndrome in liver transplantation: relation to etiology and immunosuppression. Liver Transplant. 2008;14(11):1648-1654. https://doi.org/10.1002/lt.21588 - PubMed
  19. Ruiz-Rebollo ML, Sánchez-Antolín G, García-Pajares F, et al. Risk of development of the metabolic syndrome after orthotopic liver transplantation. Transplant Proc. 2010;42(2):663-665. https://doi.org/10.1016/j.transproceed.2010.02.018 - PubMed
  20. Thoefner LB, Rostved AA, Pommergaard HC, Rasmussen A. Risk factors for metabolic syndrome after liver transplantation: a systematic review and meta-analysis. Transplant Rev. 2018;32(1):69-77. https://doi.org/10.1016/j.trre.2017.03.004 - PubMed
  21. Couto CA, Gelape CL, Doycheva IB, Kish JK, Martin P, Levy C. Ethnicity predicts metabolic syndrome after liver transplant. Hepatol Int. 2013;7(2):741-748. https://doi.org/10.1007/s12072-012-9416-x - PubMed
  22. Sprinzl MF, Weinmann A, Lohse N, et al. Metabolic syndrome and its association with fatty liver disease after orthotopic liver transplantation. Transpl Int. 2013;26(1):67-74. https://doi.org/10.1111/j.1432-2277.2012.01576.x - PubMed
  23. Iadevaia M, Giusto M, Giannelli V, et al. Metabolic syndrome and cardiovascular risk after liver transplantation: a single-center experience. Transplant Proc. 2012;44:2005-2006. https://doi.org/10.1016/j.transproceed.2012.06.022 - PubMed
  24. Tan HL, Lim KBL, Iyer SG, Chang SKY, Madhavan K, Kow AWC. Metabolic syndrome after a liver transplantation in an Asian population. HPB. 2015;17(8):713-722. https://doi.org/10.1111/hpb.12435 - PubMed
  25. Kallwitz ER. Metabolic syndrome after liver transplantation: preventable illness or common consequence? World J Gastroenterol. 2012;18(28):3627-3634. https://doi.org/10.3748/wjg.v18.i28.3627 - PubMed
  26. Fussner LA, Heimbach JK, Fan C, et al. Cardiovascular disease after liver transplantation: when, what, and who is at risk. Liver Transplant. 2015;21(7):889-896. https://doi.org/10.1002/lt.24137 - PubMed
  27. Richards J, Gunson B, Johnson J, Neuberger J. Weight gain and obesity after liver transplantation. Transpl Int. 2005;18(4):461-466. https://doi.org/10.1111/j.1432-2277.2004.00067.x - PubMed
  28. Rezende Anastácio L, García Ferreira L, Costa Liboredo J, et al. Overweight, obesity and weight gain up to three years after liver transplantation. Nutr Hosp. 2012;27(4):1351-136. https://doi.org/10.3305/nh.2012.27.4.5768 - PubMed
  29. Everhart JE, Lombardero M, Lake JR, Wiesner RH, Zetterman RK, Hoofnagle JH. Weight change and obesity after liver transplantation: incidence and risk factors. Liver Transplant Surg. 1998;4(4):285-296. https://doi.org/10.1002/lt.500040402 - PubMed
  30. Palmer M, Schaffner F, Thung SN. Excessive weight gain after liver transplantation. Transplantation. 1991;51(4):797-800. https://doi.org/10.1097/00007890-199104000-00012 - PubMed
  31. Sigit FS, Tahapary DL, Trompet S, et al. The prevalence of metabolic syndrome and its association with body fat distribution in middle-aged individuals from Indonesia and the Netherlands: a cross-sectional analysis of two population-based studies. Diabetol Metab Syndr. 2020;12(1):2. https://doi.org/10.1186/s13098-019-0503-1 - PubMed
  32. Walker GE, Marzullo P, Ricotti R, Bona G, Prodam F. The pathophysiology of abdominal adipose tissue depots in health and disease. Horm Mol Biol Clin Investig. 2014;19(1):57-74. https://doi.org/10.1515/hmbci-2014-0023 - PubMed
  33. Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev. 2000;21(6):697-738. https://doi.org/10.1210/edrv.21.6.0415 - PubMed
  34. Shah RV, Murthy VL, Abbasi SA, et al. Visceral adiposity and the risk of metabolic syndrome across body mass index: the MESA study. JACC Cardiovasc Imaging. 2014;7(12):1221-1235. https://doi.org/10.1016/j.jcmg.2014.07.017 - PubMed
  35. Yamamoto S, Nakagawa T, Matsushita Y, et al. Visceral fat area and markers of insulin resistance in relation to colorectal neoplasia. Diabetes Care. 2010;33(1):184-189. https://doi.org/10.2337/dc09-1197 - PubMed
  36. Kang HW, Kim D, Kim HJ, et al. Visceral obesity and insulin resistance as risk factors for colorectal adenoma: a cross-sectional, case-control study. Am J Gastroenterol. 2010;105(1):178-187. https://doi.org/10.1038/ajg.2009.541 - PubMed
  37. Rose DP, Haffner SM, Baillargeon J. Adiposity, the metabolic syndrome, and breast cancer in African-American and white American women. Endocr Rev. 2007;28(7):763-777. https://doi.org/10.1210/er.2006-0019 - PubMed
  38. Ryan AM, Duong M, Healy L, et al. Obesity, metabolic syndrome and esophageal adenocarcinoma: epidemiology, etiology and new targets. Cancer Epidemiol. 2011;35(4):309-319. https://doi.org/10.1016/j.canep.2011.03.001 - PubMed
  39. Von Hafe P, Pina F, Pérez A, Tavares M, Barros H. Visceral fat accumulation as a risk factor for prostate cancer. Obes Res. 2004;12(12):1930-1935. https://doi.org/10.1038/oby.2004.242 - PubMed
  40. Montano-Loza AJ, Mazurak VC, Ebadi M, et al. Visceral adiposity increases risk for hepatocellular carcinoma in male patients with cirrhosis and recurrence after liver transplant. Hepatology. 2018;67(3):914-923. https://doi.org/10.1002/hep.29578 - PubMed
  41. Prospective Studies C, Whitlock G, Lewington S, et al. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009;373(9669):1083-1096. https://doi.org/10.1016/S0140-6736(09)60318-4 - PubMed
  42. Basen-Engquist K, Chang M. Obesity and cancer risk: recent review and evidence. Curr Oncol Rep. 2011;13(1):71-76. https://doi.org/10.1007/s11912-010-0139-7 - PubMed
  43. Sjöström L, Gummesson A, Sjöström CD, et al. Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): a prospective, controlled intervention trial. Lancet Oncol. 2009;10(7):653-662. https://doi.org/10.1016/S1470-2045(09)70159-7 - PubMed
  44. Nair S, Cohen DB, Cohen C, Tan H, Maley W, Thuluvath PJ. Postoperative morbidity, mortality, costs, and long-term survival in severely obese patients undergoing orthotopic liver transplantation. Am J Gastroenterol. 2001;96(3):842-845. https://doi.org/10.1016/S0002-9270(00)02422-9 - PubMed
  45. Perez-Protto SE, Quintini C, Reynolds LF, et al. Comparable graft and patient survival in lean and obese liver transplant recipients. Liver Transplant. 2013;19(8):907-915. https://doi.org/10.1002/lt.23680 - PubMed
  46. Saab S, Lalezari D, Pruthi P, Alper T, Tong MJ. The impact of obesity on patient survival in liver transplant recipients: a meta-analysis. Liver Int. 2015;35(1):164-170. https://doi.org/10.1111/liv.12431 - PubMed
  47. Wong RJ, Cheung R, Perumpail RB, Holt EW, Ahmed A. Diabetes mellitus, and not obesity, is associated with lower survival following liver transplantation. Dig Dis Sci. 2015;60(4):1036-1044. https://doi.org/10.1007/s10620-014-3469-8 - PubMed
  48. Barone M, Viggiani MT, Losurdo G, Principi M, Leandro G, Di Leo A. Systematic review with meta-analysis: post-operative complications and mortality risk in liver transplant candidates with obesity. Aliment Pharmacol Ther. 2017;46(3):236-245. https://doi.org/10.1111/apt.14139 - PubMed
  49. Beckmann S, Drent G, Ruppar T, Nikolić N, De Geest S. Body weight parameters are related to morbidity and mortality after liver transplantation: a systematic review and meta-analysis. Transplantation. 2019;103(11):2287-2303. https://doi.org/10.1097/TP.0000000000002811 - PubMed
  50. Nair S, Verma S, Thuluvath PJ. Obesity and its effect on survival in patients undergoing orthotopic liver transplantation in the United States. Hepatology. 2002;35(1):105-109. https://doi.org/10.1053/jhep.2002.30318 - PubMed
  51. Dick AA, Spitzer AL, Seifert CF, et al. Liver transplantation at the extremes of the body mass index. Liver Transplant. 2009;15(8):968-977. https://doi.org/10.1002/lt.21785 - PubMed
  52. Lamattina JC, Foley DP, Fernandez LA, et al. Complications associated with liver transplantation in the obese recipient. Clin Transplant. 2012;26(6):910-918. https://doi.org/10.1111/j.1399-0012.2012.01669.x - PubMed
  53. Conzen KD, Vachharajani N, Collins KM, et al. Morbid obesity in liver transplant recipients adversely affects longterm graft and patient survival in a single-institution analysis. HPB. 2015;17(3):251-257. https://doi.org/10.1111/hpb.12340 - PubMed
  54. Hakeem AR, Cockbain AJ, Raza SS, et al. Increased morbidity in overweight and obese liver transplant recipients: a single-center experience of 1325 patients from the United Kingdom. Liver Transpl. 2013;19:551-562. https://doi.org/10.1002/lt.23618 - PubMed
  55. McHugh PP, Shah SH, Johnston TD, Gedaly R, Ranjan D. Predicting dry weight in patients with ascites and liver cirrhosis using computed tomography imaging. Hepatogastroenterology. 2010;57(99-100):591-597. - PubMed
  56. Fujioka S, Matsuzawa Y, Tokunaga K, Tarui S. Contribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesity. Metabolism. 1987;36(1):54-59. https://doi.org/10.1016/0026-0495(87)90063-1 - PubMed
  57. Després JP, Nadeau A, Tremblay A, et al. Role of deep abdominal fat in the association between regional adipose tissue distributioin and glucose tolerance in obese women. Diabetes. 1989;38(3):304-309. https://doi.org/10.2337/diab.38.3.304 - PubMed
  58. Pouliot MC, Després JP, Nadeau A, et al. Visceral obesity in men: associations with glucose tolerance, plasma insulin, and lipoprotein levels. Diabetes. 1992;41(7):826-834. https://doi.org/10.2337/diab.41.7.826 - PubMed
  59. Kim G, Kang SH, Kim MY, Baik SK. Prognostic value of sarcopenia in patients with liver cirrhosis: a systematic review and meta-analysis. PLoS One. 2017;12(10):0186990. https://doi.org/10.1371/journal.pone.0186990 - PubMed
  60. Tandon P, Ney M, Irwin I, et al. Severe muscle depletion in patients on the liver transplant wait list: its prevalence and independent prognostic value. Liver Transplant. 2012;18(10):1209-1216. https://doi.org/10.1002/lt.23495 - PubMed
  61. Moctezuma-Velazquez C, Márquez-Guillén E, Torre A. Obesity in the liver transplant setting. Nutrients. 2019;11(11). https://doi.org/10.3390/nu11112552 - PubMed
  62. Ohlson L-O, Larsson B, Svärdsudd K, et al. The influence of body fat distribution on the incidence of diabetes mellitus. 13.5 Years of follow-up of the participants in the study of men born in 1913. Diabetes. 1985;34(10):1055-1058. https://doi.org/10.2337/diab.34.10.1055 - PubMed
  63. Larsson B, Svardsudd K, Welin L. Abdominal adipose tissue distribution, obesity, and risk of cardiovascular disease and death: 13 year follow up of participants in the study of men born in 1913. Br Med J. 1984;288(6428):1401-1404. https://doi.org/10.1136/bmj.288.6428.1401 - PubMed
  64. Ferland M, DesprÉS JP, Tremblay A, et al. Assessment of adipose tissue distribution by computed axial tomography in obese women: association with body density and anthropometric measurements. Br J Nutr. 1989;61(2):139-148. https://doi.org/10.1079/bjn19890104 - PubMed
  65. Pouliot MC, Després JP, Lemieux S, et al. Waist circumference and abdominal sagittal diameter: best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am J Cardiol. 1994;73(7):460-468. https://doi.org/10.1016/0002-9149(94)90676-9 - PubMed
  66. Vilar-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L, et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology. 2015;149(2):367-378. https://doi.org/10.1053/j.gastro.2015.04.005 - PubMed
  67. Musso G, Cassader M, Rosina F, Gambino R. Impact of current treatments on liver disease, glucose metabolism and cardiovascular risk in non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of randomised trials. Diabetologia. 2012;55(4):885-904. https://doi.org/10.1007/s00125-011-2446-4 - PubMed
  68. Davidson MH, Hauptman J, DiGirolamo M, et al. Weight control and risk factor reduction in obese subjects treated for 2 years with orlistat: a randomized controlled trial. J Am Med Assoc. 1999;281(3):235-242. https://doi.org/10.1001/jama.281.3.235 - PubMed
  69. Zavoral JH. Treatment with orlistat reduces cardiovascular risk in obese patients. J Hypertens. 1998;16:2013-2017. https://doi.org/10.1097/00004872-199816121-00024 - PubMed
  70. Assy N, Hussein O, Abassi Z. Weight loss induced by orlistat reverses fatty infiltration and improves hepatic fibrosis in obese patients with non-alcoholic steatohepatitis. Gut. 2007;56(3):443-444. https://doi.org/10.1136/gut.2006.106021 - PubMed
  71. Zelber-Sagi S, Kessler A, Brazowsky E, et al. A double-blind randomized placebo-controlled trial of orlistat for the treatment of nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2006;4(5):639-644. https://doi.org/10.1016/j.cgh.2006.02.004 - PubMed
  72. Wang H, Wang L, Cheng Y, Xia Z, Liao Y, Cao J. Efficacy of orlistat in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Biomed Reports. 2018;9(1):90-96. https://doi.org/10.3892/br.2018.1100 - PubMed
  73. Harrison SA, Fecht W, Brunt EM, Neuschwander-Tetri BA. Orlistat for overweight subjects with nonalcoholic steatohepatitis: a randomized, prospective trial. Hepatology. 2009;49(1):80-86. https://doi.org/10.1002/hep.22575 - PubMed
  74. Filippatos TD, Derdemezis CS, Gazi IF, Nakou ES, Mikhailidis DP, Elisaf MS. Orlistat-associated adverse effects and drug interactions: a critical review. Drug Saf. 2008;31(1):53-65. https://doi.org/10.2165/00002018-200831010-00005 - PubMed
  75. Schnetzler B, Kondo-Oestreicher M, Vala D, Khatchatourian G, Faidutti B. Orlistat decreases the plasma level of cyclosporine and may be responsible for the development of acute rejection episodes. Transplantation. 2000;70(10):1540-1541. https://doi.org/10.1097/00007890-200011270-00025 - PubMed
  76. Cassiman D, Roelants M, Vandenplas G, et al. Orlistat treatment is safe in overweight and obese liver transplant recipients: a prospective, open label trial. Transpl Int. 2006;19(12):1000-1005. https://doi.org/10.1111/j.1432-2277.2006.00379.x - PubMed
  77. Wong SK, Chin KY, Suhaimi FH, Ahmad F, Ima-Nirwana S. Vitamin E as a potential interventional treatment for metabolic syndrome: evidence from animal and human studies. Front Pharmacol. 2017;8:444. https://doi.org/10.3389/fphar.2017.00444 - PubMed
  78. Zhao L, Kang I, Fang X, et al. Gamma-tocotrienol attenuates high-fat diet-induced obesity and insulin resistance by inhibiting adipose inflammation and M1 macrophage recruitment. Int J Obes. 2015;39(3):438-446. https://doi.org/10.1038/ijo.2014.124 - PubMed
  79. Zaiden N, Yap WN, Ong S, et al. Gamma delta tocotrienols reduce hepatic triglyceride synthesis and VLDL secretion. J Atheroscler Thromb. 2010;17(10):1019-1032. https://doi.org/10.5551/jat.4911 - PubMed
  80. Budin SB, Othman F, Louis SR, Bakar MA, Das S, Mohamed J. The effects of palm oil tocotrienol-rich fraction supplementation on biochemical parameters, oxidative stress and the vascular wall of streptozotocin-induced diabetic rats. Clinics. 2009;64(3):235-244. https://doi.org/10.1590/S1807-59322009000300015 - PubMed
  81. Matough FA, Budin SB, Hamid ZA, Abdul-Rahman M, Al-Wahaibi N, Mohammed J. Tocotrienol-rich fraction from palm oil prevents oxidative damage in diabetic rats. Sultan Qaboos Univ Med J. 2014;14(1):e95-e103. https://doi.org/10.12816/0003342 - PubMed
  82. Newaz MA, Yousefipour Z, Nawal N, Adeeb N. Nitric oxide synthase activity in blood vessels of spontaneously hypertensive rats: antioxidant protection by gamma-tocotrienol. J Physiol Pharmacol. 2003;54(3):319-327. - PubMed
  83. Aasheim ET, Hofsø D, Hjelmesaeth J, Birkeland KI, Bøhmer T. Vitamin status in morbidly obese patients: a cross-sectional study. Am J Clin Nutr. 2008;87(2):362-369. https://doi.org/10.1093/ajcn/87.2.362 - PubMed
  84. Mah E, Sapper TN, Chitchumroonchokchai C, et al. Tocopherol bioavailability is lower in adults with metabolic syndrome regardless of dairy fat co-ingestion: a randomized, double-blind, crossover trial. Am J Clin Nutr. 2015;102(5):1070-1080. https://doi.org/10.3945/ajcn.115.118570 - PubMed
  85. Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. J Am Med Assoc. 2007;297(8):842-857. https://doi.org/10.1001/jama.297.8.842 - PubMed
  86. Schürks M, Glynn RJ, Rist PM, Tzourio C, Kurth T. Effects of vitamin E on stroke subtypes: meta-analysis of randomised controlled trials. BMJ. 2010;341(7781):1033. https://doi.org/10.1136/bmj.c5702 - PubMed
  87. Klein EA, Thompson IM Jr, Tangen CM, et al. Vitamin E and the risk of prostate cancer: the selenium and vitamin E cancer prevention trial (SELECT). JAMA. 2011;306(14):1549-1556. https://doi.org/10.1001/jama.2011.1437 - PubMed
  88. Tsamalaidze L, Stauffer JA, Arasi LC, et al. Laparoscopic sleeve gastrectomy for morbid obesity in patients after orthotopic liver transplant: a matched case-control study. Obes Surg. 2018;28(2):444-450. https://doi.org/10.1007/s11695-017-2847-7 - PubMed
  89. Diwan TS, Lichvar AB, Leino AD, et al. Pharmacokinetic and pharmacogenetic analysis of immunosuppressive agents after laparoscopic sleeve gastrectomy. Clin Transplant. 2017;31(6). https://doi.org/10.1111/ctr.12975 - PubMed
  90. Lazzati A, Iannelli A, Schneck AS, et al. Bariatric surgery and liver transplantation: a systematic review a new frontier for bariatric surgery. Obes Surg. 2015;25(1):134-142. https://doi.org/10.1007/s11695-014-1430-8 - PubMed
  91. Lin MY, Tavakol MM, Sarin A, et al. Safety and feasibility of sleeve gastrectomy in morbidly obese patients following liver transplantation. Surg Endosc. 2013;27(1):81-85. https://doi.org/10.1007/s00464-012-2410-5 - PubMed
  92. Yang X, Yang G, Wang W, Chen G, Yang H. A meta-analysis: to compare the clinical results between gastric bypass and sleeve gastrectomy for the obese patients. Obes Surg. 2013;23(7):1001-1010. https://doi.org/10.1007/s11695-013-0938-7 - PubMed
  93. Mattar SG, Velcu LM, Rabinovitz M, et al. Surgically-induced weight loss significantly improves nonalcoholic fatty liver disease and the metabolic syndrome. Ann Surg. 2005;242:610-620. https://doi.org/10.1097/01.sla.0000179652.07502.3f - PubMed
  94. Miller AD, Smith KM. Medication and nutrient administration considerations after bariatric surgery. Am J Heal Pharm. 2006;63(19):1852-1857. https://doi.org/10.2146/ajhp060033 - PubMed
  95. Duchini A, Brunson ME. Roux-en-Y gastric bypass for recurrent nonalcoholic steatohepatitis in liver transplant recipients with morbid obesity. Transplantation. 2001;72(1):156-159. https://doi.org/10.1097/00007890-200107150-00029 - PubMed
  96. Charlton MR, Burns JM, Pedersen RA, Watt KD, Heimbach JK, Dierkhising RA. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology. 2011;141(4):1249-1253. https://doi.org/10.1053/j.gastro.2011.06.061 - PubMed
  97. Marchesini G, Day CP, Dufour JF, et al. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016;64(6):1388-1402. https://doi.org/10.1016/j.jhep.2015.11.004 - PubMed
  98. Wong RJ, Aguilar M, Cheung R, et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology. 2015;148(3):547-555. https://doi.org/10.1053/j.gastro.2014.11.039 - PubMed
  99. Bhati C, Idowu MO, Sanyal AJ, et al. Long-term outcomes in patients undergoing liver transplantation for nonalcoholic steatohepatitis-related cirrhosis. Transplantation. 2017;101(8):1867-1874. https://doi.org/10.1097/TP.0000000000001709 - PubMed
  100. Younossi Z, Stepanova M, Ong JP, et al. Nonalcoholic steatohepatitis is the fastest growing cause of hepatocellular carcinoma in liver transplant candidates. Clin Gastroenterol Hepatol. 2019;17(4):748-755. https://doi.org/10.1016/j.cgh.2018.05.057 - PubMed
  101. Contos MJ, Cales W, Sterling RK, et al. Development of nonalcoholic fatty liver disease after orthotopic liver transplantation for cryptogenic cirrhosis. Liver Transplant. 2001;7(4):363-373. https://doi.org/10.1053/jlts.2001.23011 - PubMed
  102. Yalamanchili K, Saadeh S, Klintmalm GB, Jennings LW, Davis GL. Nonalcoholic fatty liver disease after liver transplantation for cryptogenic cirrhosis or nonalcoholic fatty liver disease. Liver Transplant. 2010;16(4):431-439. https://doi.org/10.1002/lt.22004 - PubMed
  103. Germani G, Laryea M, Rubbia-Brandt L, et al. Management of recurrent and de Novo NAFLD/NASH after liver transplantation. Transplantation. 2019;103(1):57-67. https://doi.org/10.1097/TP.0000000000002485 - PubMed
  104. Narayanan P, Mara K, Izzy M, et al. Recurrent or de novo allograft steatosis and long-term outcomes after liver transplantation. Transplantation. 2019;103(1):E14-E21. https://doi.org/10.1097/TP.0000000000002317 - PubMed
  105. Vallin M, Guillaud O, Boillot O, Hervieu V, Scoazec JY, Dumortier J. Recurrent or de novo nonalcoholic fatty liver disease after liver transplantation: natural history based on liver biopsy analysis. Liver Transplant. 2014;20(9):1064-1071. https://doi.org/10.1002/lt.23936 - PubMed
  106. Younossi ZM, Stepanova M, Negro F, et al. Nonalcoholic fatty liver disease in lean individuals in the United States. Med (United States). 2012;91(6):319-327. https://doi.org/10.1097/MD.0b013e3182779d49 - PubMed
  107. Gawrieh S, Dakhoul L, Miller E, et al. Characteristics, aetiologies and trends of hepatocellular carcinoma in patients without cirrhosis: a United States multicentre study. Aliment Pharmacol Ther. 2019;50(7):809-821. https://doi.org/10.1111/apt.15464 - PubMed
  108. Promrat K, Kleiner DE, Niemeier HM, et al. Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis. Hepatology. 2010;51(1):121-129. https://doi.org/10.1002/hep.23276 - PubMed
  109. Promrat K, Lutchman G, Uwaifo GI, et al. A pilot study of pioglitazone treatment for nonalcoholic steatohepatitis. Hepatology. 2004;39(1):188-196. https://doi.org/10.1002/hep.20012 - PubMed
  110. Aithal GP, Thomas JA, Kaye PV, et al. Randomized, placebo-controlled trial of pioglitazone in nondiabetic subjects with nonalcoholic steatohepatitis. Gastroenterology. 2008;135(4):1176-1184. https://doi.org/10.1053/j.gastro.2008.06.047 - PubMed
  111. Iogna Prat L, Tsochatzis EA. The effect of antidiabetic medications on non-alcoholic fatty liver disease (NAFLD). Hormones. 2018;17(2):219-229. https://doi.org/10.1007/s42000-018-0021-9 - PubMed
  112. Caldwell SH, Hespenheide EE, Redick JA, Iezzoni JC, Battle EH, Sheppard BL. A pilot study of a thiazolidinedione, troglitazone, in nonalcoholic steatohepatitis. Am J Gastroenterol. 2001;96(2):519-525. https://doi.org/10.1016/S0002-9270(00)02346-7 - PubMed
  113. Shah P, Mudaliar S. Pioglitazone: side effect and safety profile. Expert Opin Drug Saf. 2010;9(2):347-354. https://doi.org/10.1517/14740331003623218 - PubMed
  114. Connolly JJ, Ooka K, Lim JK. Future pharmacotherapy for non-alcoholic steatohepatitis (Nash): review of phase 2 and 3 trials. J Clin Transl Hepatol. 2018;6(3):264-275. https://doi.org/10.14218/JCTH.2017.00056 - PubMed
  115. Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362(18):1675-1685. https://doi.org/10.1056/nejmoa0907929 - PubMed
  116. Harrison SA, Bashir MR, Guy CD, et al. Resmetirom (MGL-3196) for the treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2019;394(10213):2012-2024. https://doi.org/10.1016/S0140-6736(19)32517-6 - PubMed
  117. Xiang Z, Chen YP, Ma KF, et al. The role of ursodeoxycholic acid in non-alcoholic steatohepatitis: a systematic review. BMC Gastroenterol. 2013;13(1):140. https://doi.org/10.1186/1471-230X-13-140 - PubMed
  118. Saab S, Mallam D, Cox GA, Tong MJ. Impact of coffee on liver diseases: a systematic review. Liver Int. 2014;34(4):495-504. https://doi.org/10.1111/liv.12304 - PubMed
  119. Wang R, Li H, Yang X, et al. Genetically obese human gut microbiota induces liver steatosis in germ-free mice fed on normal diet. Front Microbiol. 2018;9:1602. https://doi.org/10.3389/fmicb.2018.01602 - PubMed
  120. Hartstra AV, Bouter KEC, Bäckhed F, Nieuwdorp M. Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care. 2015;38(1):159-165. https://doi.org/10.2337/dc14-0769 - PubMed
  121. Leung C, Rivera L, Furness JB, Angus PW. The role of the gut microbiota in NAFLD. Nat Rev Gastroenterol Hepatol. 2016;13(7):412-425. https://doi.org/10.1038/nrgastro.2016.85 - PubMed
  122. Yoshimoto S, Loo TM, Atarashi K, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499(7456):97-101. https://doi.org/10.1038/nature12347 - PubMed
  123. Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57-65. https://doi.org/10.1038/nature09922 - PubMed
  124. Rosenbaum M, Knight R, Leibel RL. The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol Metab. 2015;26(9):493-501. https://doi.org/10.1016/j.tem.2015.07.002 - PubMed
  125. Maslowski KM, Vieira AT, Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461(7268):1282-1286. https://doi.org/10.1038/nature08530 - PubMed
  126. Martin-Gallausiaux C, Béguet-Crespel F, Marinelli L, et al. Butyrate produced by gut commensal bacteria activates TGF-beta1 expression through the transcription factor SP1 in human intestinal epithelial cells. Sci Rep. 2018;8(1):9742. https://doi.org/10.1038/s41598-018-28048-y - PubMed
  127. Tolhurst G, Heffron H, Lam YS, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61(2):364-371. https://doi.org/10.2337/db11-1019 - PubMed
  128. Moran TH, Dailey MJ. Intestinal feedback signaling and satiety. Physiol Behav. 2011;105(1):77-81. https://doi.org/10.1016/j.physbeh.2011.02.005 - PubMed
  129. Wang L, Wan YJY. The role of gut microbiota in liver disease development and treatment. Liver Res. 2019;3(1):3-18. https://doi.org/10.1016/j.livres.2019.02.001 - PubMed
  130. Jumpertz R, Le DS, Turnbaugh PJ, et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr. 2011;94(1):58-65. https://doi.org/10.3945/ajcn.110.010132 - PubMed
  131. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022-1023. https://doi.org/10.1038/4441022a - PubMed
  132. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027-1031. https://doi.org/10.1038/nature05414 - PubMed
  133. Zhang H, DiBaise JK, Zuccolo A, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci USA. 2009;106(7):2365-2370. https://doi.org/10.1073/pnas.0812600106 - PubMed
  134. Duncan SH, Lobley GE, Holtrop G, et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes. 2008;32(11):1720-1724. https://doi.org/10.1038/ijo.2008.155 - PubMed
  135. Raoult D. Obesity pandemics and the modification of digestive bacterial flora. Eur J Clin Microbiol Infect Dis. 2008;27(8):631-634. https://doi.org/10.1007/s10096-008-0490-x - PubMed
  136. Raoult D. Probiotics and obesity: a link? Nat Rev Microbiol. 2009;7(9):616. https://doi.org/10.1038/nrmicro2209 - PubMed
  137. Raoult D. Human microbiome: take-home lesson on growth promoters? Nature. 2008;454(7205):690-691. https://doi.org/10.1038/454690c - PubMed
  138. Million M, Maraninchi M, Henry M, et al. Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int J Obes. 2012;36(6):817-825. https://doi.org/10.1038/ijo.2011.153 - PubMed
  139. England JA, Watkins SE, Saleh E, Waldroup PW, Casas I, Burnham D. Effects of Lactobacillus reuteri on live performance and intestinal development of male turkeys. J Appl Poult Res. 1996;5(4):311-324. https://doi.org/10.1093/japr/5.4.311 - PubMed
  140. Lu Y-C, Yin L-T, Chang W-T, Huang J-S. Effect of Lactobacillus reuteri GMNL-263 treatment on renal fibrosis in diabetic rats. J Biosci Bioeng. 2010;110(6):709-715. https://doi.org/10.1016/j.jbiosc.2010.07.006 - PubMed
  141. Li F, Ye J, Shao C, Zhong B. Compositional alterations of gut microbiota in nonalcoholic fatty liver disease patients: a systematic review and Meta-analysis. Lipids Health Dis. 2021;20(1):22. https://doi.org/10.1186/s12944-021-01440-w - PubMed
  142. Juárez-Fernández M, Porras D, García-Mediavilla MV, et al. Aging, gut microbiota and metabolic diseases: management through physical exercise and nutritional interventions. Nutrients. 2020;13(1). https://doi.org/10.3390/nu13010016 - PubMed
  143. Xie G, Wang X, Liu P, et al. Distinctly altered gut microbiota in the progression of liver disease. Oncotarget. 2016;7(15):19355-19366. https://doi.org/10.18632/oncotarget.8466 - PubMed
  144. Boursier J, Mueller O, Barret M, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology. 2016;63(3):764-775. https://doi.org/10.1002/hep.28356 - PubMed
  145. Bajaj JS, Betrapally NS, Hylemon PB, et al. Gut microbiota alterations can predict hospitalizations in cirrhosis independent of diabetes mellitus. Sci Rep. 2015;5:18559. https://doi.org/10.1038/srep18559 - PubMed
  146. Lu HF, Ren ZG, Li A, et al. Fecal microbiome data distinguish liver recipients with normal and abnormal liver function from healthy controls. Front Microbiol. 2019;10:1518. https://doi.org/10.3389/fmicb.2019.01518 - PubMed
  147. Wu ZW, Ling ZX, Lu HF, et al. Changes of gut bacteria and immune parameters in liver transplant recipients. Hepatobiliary Pancreat Dis Int. 2012;11(1):40-50. https://doi.org/10.1016/S1499-3872(11)60124-0 - PubMed
  148. Moya-Pérez A, Neef A, Sanz Y. Bifidobacterium pseudocatenulatum CECT 7765 reduces obesity-associated inflammation by restoring the lymphocyte-macrophage balance and gut microbiota structure in high-fat diet-fed mice. PLoS One. 2015;10(7):0126976. https://doi.org/10.1371/journal.pone.0126976 - PubMed
  149. Jorgenson MR, Descourouez JL, Siodlak M, Tjugum S, Rice JP, Fernandez LA. Efficacy and safety of probiotics and synbiotics in liver transplantation. Pharmacotherapy. 2018;38(7):758-768. https://doi.org/10.1002/phar.2130 - PubMed
  150. Parnell JA, Reimer RA. Prebiotic fibres dose-dependently increase satiety hormones and alter Bacteroidetes and Firmicutes in lean and obese JCR:LA-cp rats. Br J Nutr. 2012;107(4):601-613. https://doi.org/10.1017/S0007114511003163 - PubMed
  151. Kellow NJ, Coughlan MT, Reid CM. Metabolic benefits of dietary prebiotics in human subjects: a systematic review of randomised controlled trials. Br J Nutr. 2014;111(7):1147-1161. https://doi.org/10.1017/S0007114513003607 - PubMed
  152. Xue L, He J, Gao N, et al. Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia. Sci Rep. 2017;7(1):45176. https://doi.org/10.1038/srep45176 - PubMed
  153. Xie C, Halegoua-Demarzio D. Role of probiotics in non-alcoholic fatty liver disease: Does gut microbiota matter? Nutrients. 2019;11(11). https://doi.org/10.3390/nu11112837 - PubMed
  154. Kriss M, Verna EC, Rosen HR, Lozupone CA. Functional microbiomics in liver transplantation: identifying novel targets for improving allograft outcomes. Transplantation. 2019;103(4):668-678. https://doi.org/10.1097/TP.0000000000002568 - PubMed
  155. Bhat M, Pasini E, Copeland J, et al. Impact of immunosuppression on the metagenomic composition of the intestinal microbiome: a systems biology approach to post-transplant diabetes. Sci Rep. 2017;7(1):10277. https://doi.org/10.1038/s41598-017-10471-2 - PubMed
  156. Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913-916. https://doi.org/10.1053/j.gastro.2012.06.031 - PubMed
  157. Proença IM, Allegretti JR, Bernardo WM, et al. Fecal microbiota transplantation improves metabolic syndrome parameters: systematic review with meta-analysis based on randomized clinical trials. Nutr Res. 2020;83:1-14. https://doi.org/10.1016/j.nutres.2020.06.018 - PubMed
  158. Kelly CR, Ihunnah C, Fischer M, et al. Fecal microbiota transplant for treatment of clostridium difficile infection in immunocompromised patients. Am J Gastroenterol. 2014;109(7):1065-1071. https://doi.org/10.1038/ajg.2014.133 - PubMed
  159. Smit C, De Hoogd S, Brüggemann RJM, Knibbe CAJ. Obesity and drug pharmacology: a review of the influence of obesity on pharmacokinetic and pharmacodynamic parameters. Expert Opin Drug Metab Toxicol. 2018;14(3):275-285. https://doi.org/10.1080/17425255.2018.1440287 - PubMed
  160. Rogers CC, Alloway RR, Alexander JW, Cardi M, Trofe J, Vinks AA. Pharmacokinetics of mycophenolic acid, tacrolimus and sirolimus after gastric bypass surgery in end-stage renal disease and transplant patients: a pilot study. Clin Transplant. 2008;22(3):281-291. https://doi.org/10.1111/j.1399-0012.2007.00783.x - PubMed
  161. Brill MJE, Diepstraten J, Van Rongen A, Van Kralingen S, Van Den Anker JN, Knibbe CAJ. Impact of obesity on drug metabolism and elimination in adults and children. Clin Pharmacokinet. 2012;51(5):277-304. https://doi.org/10.2165/11599410-000000000-00000 - PubMed
  162. Rodríguez-Morató J, Goday A, Langohr K, et al. Short- and medium-term impact of bariatric surgery on the activities of CYP2D6, CYP3A4, CYP2C9, and CYP1A2 in morbid obesity. Sci Rep. 2019;9(1):20405. https://doi.org/10.1038/s41598-019-57002-9 - PubMed
  163. Fisher CD, Lickteig AJ, Augustine LM, et al. Hepatic cytochrome P450 enzyme alterations in humans with progressive stages of nonalcoholic fatty liver disease. Drug Metab Dispos. 2009;37(10):2087-2094. https://doi.org/10.1124/dmd.109.027466 - PubMed
  164. Charlton M, Levitsky J, Aqel B, et al. International liver transplantation society consensus statement on immunosuppression in liver transplant recipients. Transplantation. 2018;102(5):727-743. https://doi.org/10.1097/TP.0000000000002147 - PubMed
  165. Migliozzi DR, Asal NJ. Clinical controversy in transplantation: tacrolimus versus cyclosporine in statin drug interactions. Ann Pharmacother. 2020;54(2):171-177. https://doi.org/10.1177/1060028019871891 - PubMed
  166. Murray M, Zhou F. Trafficking and other regulatory mechanisms for organic anion transporting polypeptides and organic anion transporters that modulate cellular drug and xenobiotic influx and that are dysregulated in disease. Br J Pharmacol. 2017;174(13):1908-1924. https://doi.org/10.1111/bph.13785 - PubMed
  167. Fisher CD, Lickteig AJ, Augustine LM, et al. Experimental non-alcoholic fatty liver disease results in decreased hepatic uptake transporter expression and function in rats. Eur J Pharmacol. 2009;613(1-3):119-127. https://doi.org/10.1016/j.ejphar.2009.04.002 - PubMed
  168. Ali I, Slizgi JR, Kaullen JD, et al. Transporter-mediated alterations in patients with NASH increase systemic and hepatic exposure to an OATP and MRP2 substrate. Clin Pharmacol Ther. 2018;104(4):749-756. https://doi.org/10.1002/cpt.997 - PubMed
  169. Hollenstein UM, Brunner M, Schmid R, Müller M. Soft tissue concentrations of ciprofloxacin in obese and lean subjects following weight-adjusted dosing. Int J Obes. 2001;25(3):354-358. https://doi.org/10.1038/sj.ijo.0801555 - PubMed
  170. Brill MJ, Houwink AP, Schmidt S, et al. Reduced subcutaneous tissue distribution of cefazolin in morbidly obese versus non-obese patients determined using clinical microdialysis. J Antimicrob Chemother. 2014;69(3):715-723. https://doi.org/10.1093/jac/dkt444 - PubMed
  171. Bearden DT, Rodvold KA. Dosage adjustments for antibacterials in obese patients: applying clinical pharmacokinetics. Clin Pharmacokinet. 2000;38(5):415-426. https://doi.org/10.2165/00003088-200038050-00003 - PubMed
  172. Forse RA, Karam B, MacLean LD, Christou NV. Antibiotic prophylaxis for surgery in morbidly obese patients. Surgery. 1989;106(4):750-757. https://doi.org/10.5555/uri:pii:0039606089901396 - PubMed
  173. Cillo U, De Carlis L, Del Gaudio M, et al. Immunosuppressive regimens for adult liver transplant recipients in real-life practice: consensus recommendations from an Italian Working Group. Hepatol Int. 2020;14(6):930-943. https://doi.org/10.1007/s12072-020-10091-5 - PubMed
  174. Lan X, Liu MG, Chen HX, et al. Efficacy of immunosuppression monotherapy after liver transplantation: a meta-analysis. World J Gastroenterol. 2014;20(34):12330-12340. https://doi.org/10.3748/wjg.v20.i34.12330 - PubMed
  175. Barnard A, Konyn P, Saab S. Medical management of metabolic complications of liver transplant recipients. Gastroenterol Hepatol. 2016;12(10):601-608. - PubMed
  176. Moini M, Schilsky ML, Tichy EM. Review on immunosuppression in liver transplantation. World J Hepatol. 2015;7(10):1355-1368. https://doi.org/10.4254/wjh.v7.i10.1355 - PubMed
  177. Manzia TM, De Liguori Carino N, Orlando G, et al. Use of mycophenolate mofetil in liver transplantation: a literature review. Transplant Proc. 2005;37(6):2616-2617. https://doi.org/10.1016/j.transproceed.2005.06.073 - PubMed
  178. Kurdi A, Martinet W, de Meyer GRY. mTOR inhibition and cardiovascular diseases: dyslipidemia and atherosclerosis. Transplantation. 2017;102(2S):44. https://doi.org/10.1097/TP.0000000000001693 - PubMed
  179. Charlton M, Rinella M, Patel D, McCague K, Heimbach J, Watt K. Everolimus is associated with less weight gain than tacrolimus 2 years after liver transplantation: results of a randomized multicenter study. Transplantation. 2017;101(12):2873-2882. https://doi.org/10.1097/TP.0000000000001913 - PubMed
  180. Fairfield C, Penninga L, Powell J, Harrison EM, Wigmore SJ. Glucocorticosteroid-free versus glucocorticosteroid-containing immunosuppression for liver transplanted patients. Cochrane Database Syst Rev. 2018;2018(4):007606. https://doi.org/10.1002/14651858.CD007606.pub4 - PubMed
  181. Otero A, Varo E, De Urbina JO, et al. A prospective randomized open study in liver transplant recipients: daclizumab, mycophenolate mofetil, and tacrolimus versus tacrolimus and steroids. Liver Transplant. 2009;15(11):1542-1552. https://doi.org/10.1002/lt.21854 - PubMed
  182. Klintmalm GB, Washburn WK, Rudich SM, et al. Corticosteroid-free immunosuppression with daclizumab in HCV+ liver transplant recipients: 1-year interim results of the HCV-3 study. Liver Transplant. 2007;13(11):1521-1531. https://doi.org/10.1002/lt.21182 - PubMed
  183. Sgourakis G, Dedemadi G. Corticosteroid-free immunosuppression in liver transplantation: an evidence-based review. World J Gastroenterol. 2014;20(31):10703-10714. https://doi.org/10.3748/wjg.v20.i31.10703 - PubMed
  184. Segev DL, Sozio SM, Shin EJ, et al. Steroid avoidance in liver transplantation: meta-analysis and meta-regression of randomized trials. Liver Transplant. 2008;14(4):512-525. https://doi.org/10.1002/lt.21396 - PubMed
  185. Junge G, Neuhaus R, Schewior L, et al. Withdrawal of steroids: a randomized prospective study of prednisone and tacrolimus versus mycophenolate mofetil and tacrolimus in liver transplant recipients with autoimmune hepatitis. Transplant Proc. 2005;37:1695-1696. https://doi.org/10.1016/j.transproceed.2005.03.145 - PubMed
  186. Weiler N, Thrun I, Hoppe-Lotichius M, Zimmermann T, Kraemer I, Otto G. Early steroid-free immunosuppression with FK506 after liver transplantation: long-term results of a prospectively randomized double-blinded trial. Transplantation. 2010;90(12):1562-1566. https://doi.org/10.1097/TP.0b013e3181ff8794 - PubMed

Publication Types