Display options
Share it on

mSystems. 2021 Aug 31;6(4):e0061021. doi: 10.1128/mSystems.00610-21. Epub 2021 Jul 13.

Targeting Bacterial Gyrase with Cystobactamid, Fluoroquinolone, and Aminocoumarin Antibiotics Induces Distinct Molecular Signatures in Pseudomonas aeruginosa.

mSystems

Raimo Franke, Heike Overwin, Susanne Häussler, Mark Brönstrup

Affiliations

  1. Department of Chemical Biology, Helmholtz Centre for Infection Researchgrid.7490.a, Braunschweig, Germany.
  2. Institute of Molecular Bacteriology, Twincore, Centre for Clinical and Experimental Infection Research, Hannover, Germany.
  3. Department of Molecular Bacteriology, Helmholtz Centre for Infection Researchgrid.7490.a, Braunschweig, Germany.
  4. German Centre for Infection Research (DZIF), Braunschweig, Germany.

PMID: 34254824 PMCID: PMC8407119 DOI: 10.1128/mSystems.00610-21

Abstract

The design of novel antibiotics relies on a profound understanding of their mechanism of action. While it has been shown that cellular effects of antibiotics cluster according to their molecular targets, we investigated whether compounds binding to different sites of the same target can be differentiated by their transcriptome or metabolome signatures. The effects of three fluoroquinolones, two aminocoumarins, and two cystobactamids, all inhibiting bacterial gyrase, on Pseudomonas aeruginosa at subinhibitory concentrations could be distinguished clearly by RNA sequencing as well as metabolomics. We observed a strong (2.8- to 212-fold) induction of autolysis-triggering pyocins in all gyrase inhibitors, which correlated with extracellular DNA (eDNA) release. Gyrase B-binding aminocoumarins induced the most pronounced changes, including a strong downregulation of phenazine and rhamnolipid virulence factors. Cystobactamids led to a downregulation of a glucose catabolism pathway. The study implies that clustering cellular mechanisms of action according to the primary target needs to take class-dependent variances into account.

Keywords: DNA gyrase; Pseudomonas aeruginosa; RNA sequencing; antibiotics; gyrase; metabolomics; mode of action

References

  1. Mol Microbiol. 2000 Aug;37(3):561-73 - PubMed
  2. J Bacteriol. 2011 Jul;193(14):3606-17 - PubMed
  3. Sci Rep. 2018 Nov 15;8(1):16912 - PubMed
  4. Front Microbiol. 2019 May 03;10:913 - PubMed
  5. Ann Transl Med. 2015 Dec;3(22):358 - PubMed
  6. Antimicrob Agents Chemother. 2020 Feb 21;64(3): - PubMed
  7. Angew Chem Int Ed Engl. 2013 Mar 4;52(10):2744-92 - PubMed
  8. Cell Rep. 2017 May 9;19(6):1214-1228 - PubMed
  9. Cell. 2007 Sep 7;130(5):797-810 - PubMed
  10. mBio. 2019 Jan 29;10(1): - PubMed
  11. Biochemistry. 1993 Mar 16;32(10):2717-24 - PubMed
  12. Antioxid Redox Signal. 2010 Mar;12(3):323-5 - PubMed
  13. Bioinformatics. 2014 Apr 1;30(7):923-30 - PubMed
  14. Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19484-9 - PubMed
  15. Angew Chem Int Ed Engl. 2014 Dec 22;53(52):14605-9 - PubMed
  16. Chemistry. 2020 Apr 1;26(19):4289-4296 - PubMed
  17. PLoS Genet. 2012 Feb;8(2):e1002518 - PubMed
  18. J Appl Microbiol. 2000 May;88(5):784-90 - PubMed
  19. J Mol Biol. 1987 Apr 20;194(4):621-34 - PubMed
  20. Molecules. 2018 Oct 13;23(10): - PubMed
  21. Metab Eng. 2019 Jul;54:35-53 - PubMed
  22. Nucleic Acids Res. 2002 Jan 1;30(1):207-10 - PubMed
  23. Environ Microbiol. 2018 Nov;20(11):3952-3963 - PubMed
  24. Anal Chem. 2006 Feb 1;78(3):779-87 - PubMed
  25. J Am Chem Soc. 2011 Aug 10;133(31):12144-53 - PubMed
  26. Chemistry. 2020 Jun 5;26(32):7219-7225 - PubMed
  27. J Bacteriol. 1988 Jan;170(1):442-5 - PubMed
  28. Lancet Infect Dis. 2019 Feb;19(2):e40-e50 - PubMed
  29. Cell Metab. 2019 Aug 6;30(2):251-259 - PubMed
  30. Nucleic Acids Res. 2019 Jan 8;47(D1):D716-D720 - PubMed
  31. Nat Methods. 2015 Apr;12(4):323-5 - PubMed
  32. Proc Natl Acad Sci U S A. 1983 May;80(9):2510-3 - PubMed
  33. Antimicrob Agents Chemother. 2016 Mar 25;60(4):2281-91 - PubMed
  34. Infect Immun. 2014 Apr;82(4):1638-47 - PubMed
  35. Nature. 2018 Jul;559(7713):259-263 - PubMed
  36. Nucleic Acids Res. 2013 May 1;41(10):e108 - PubMed
  37. Appl Microbiol Biotechnol. 2010 May;86(6):1659-70 - PubMed
  38. J Bacteriol. 2014 Sep;196(18):3351-9 - PubMed
  39. Angew Chem Int Ed Engl. 2017 Oct 2;56(41):12760-12764 - PubMed
  40. Nat Med. 2019 Dec;25(12):1858-1864 - PubMed
  41. Expert Opin Drug Discov. 2019 May;14(5):455-468 - PubMed
  42. mSystems. 2019 Jan 8;4(1): - PubMed
  43. Front Microbiol. 2014 Jan 08;4:422 - PubMed
  44. PLoS One. 2012;7(7):e39390 - PubMed
  45. J Bacteriol. 2007 Jul;189(14):5142-52 - PubMed
  46. EMBO Rep. 2006 Jul;7(7):710-5 - PubMed
  47. Anal Chem. 2012 Jan 3;84(1):283-9 - PubMed
  48. Appl Microbiol Biotechnol. 2011 Nov;92(3):479-97 - PubMed
  49. Bioinformatics. 2010 Jan 1;26(1):139-40 - PubMed
  50. Nucleic Acids Res. 2019 May 7;47(8):e47 - PubMed
  51. Clin Microbiol Rev. 2019 May 29;32(3): - PubMed
  52. Antimicrob Agents Chemother. 2005 Aug;49(8):3222-7 - PubMed
  53. BMC Mol Cell Biol. 2019 Jul 18;20(1):26 - PubMed
  54. Nat Prod Rep. 2016 May 4;33(5):681-708 - PubMed
  55. BMC Microbiol. 2016 May 10;16:82 - PubMed
  56. J Med Chem. 2019 Apr 25;62(8):4225-4231 - PubMed
  57. Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8433-8 - PubMed
  58. Lancet Infect Dis. 2018 Mar;18(3):318-327 - PubMed
  59. Chem Sci. 2019 Dec 10;11(5):1316-1334 - PubMed
  60. J Bacteriol. 2006 Oct;188(20):7101-10 - PubMed
  61. Bioorg Med Chem. 2016 Aug 1;24(15):3232-45 - PubMed
  62. mBio. 2020 Feb 25;11(1): - PubMed
  63. Front Cell Infect Microbiol. 2017 Feb 15;7:39 - PubMed
  64. J Antimicrob Chemother. 2013 Mar;68(3):529-38 - PubMed
  65. BMC Genomics. 2005 Sep 08;6:115 - PubMed
  66. Sci Transl Med. 2018 Feb 21;10(429): - PubMed
  67. J Biol Chem. 2000 Nov 24;275(47):37181-6 - PubMed
  68. Comput Struct Biotechnol J. 2019 Jul 26;17:1047-1055 - PubMed
  69. mBio. 2015 Oct 27;6(6):e01603-15 - PubMed
  70. Mol Microbiol. 2006 Feb;59(4):1114-28 - PubMed
  71. Nat Commun. 2016 Apr 14;7:11220 - PubMed
  72. Nat Biotechnol. 2008 Sep;26(9):983-4 - PubMed
  73. Microb Biotechnol. 2018 May;11(3):442-454 - PubMed

Publication Types

Grant support