Display options
Share it on

mBio. 2021 Aug 31;12(4):e0165621. doi: 10.1128/mBio.01656-21. Epub 2021 Jul 20.

Cation and Anion Channelrhodopsins: Sequence Motifs and Taxonomic Distribution.

mBio

Elena G Govorunova, Oleg A Sineshchekov, Hai Li, Yumei Wang, Leonid S Brown, Alyssa Palmateer, Michael Melkonian, Shifeng Cheng, Eric Carpenter, Jordan Patterson, Gane K-S Wong, John L Spudich

Affiliations

  1. Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA.
  2. Department of Physics and Biophysics Interdepartmental Group, University of Guelphgrid.34429.38, Guelph, Ontario, Canada.
  3. Max Planck Institute for Plant Breeding Researchgrid.419498.9, Integrative Bioinformatics, Cologne, Germany.
  4. Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
  5. Departments of Biological Sciences and of Medicine, University of Albertagrid.17089.37, Edmonton, Alberta, Canada.
  6. Beijing Genomics Institute-Shenzhen, Shenzhen, China.

PMID: 34281394 PMCID: PMC8406140 DOI: 10.1128/mBio.01656-21

Abstract

Cation and anion channelrhodopsins (CCRs and ACRs, respectively) primarily from two algal species, Chlamydomonas reinhardtii and Guillardia theta, have become widely used as optogenetic tools to control cell membrane potential with light. We mined algal and other protist polynucleotide sequencing projects and metagenomic samples to identify 75 channelrhodopsin homologs from four channelrhodopsin families, including one revealed in dinoflagellates in this study. We carried out electrophysiological analysis of 33 natural channelrhodopsin variants from different phylogenetic lineages and 10 metagenomic homologs in search of sequence determinants of ion selectivity, photocurrent desensitization, and spectral tuning in channelrhodopsins. Our results show that association of a reduced number of glutamates near the conductance path with anion selectivity depends on a wider protein context, because prasinophyte homologs with a glutamate pattern identical to that in cryptophyte ACRs are cation selective. Desensitization is also broadly context dependent, as in one branch of stramenopile ACRs and their metagenomic homologs, its extent roughly correlates with phylogenetic relationship of their sequences. Regarding spectral tuning, we identified two prasinophyte CCRs with red-shifted spectra to 585 nm. They exhibit a third residue pattern in their retinal-binding pockets distinctly different from those of the only two types of red-shifted channelrhodopsins known (i.e., the CCR Chrimson and RubyACRs). In cryptophyte ACRs we identified three specific residue positions in the retinal-binding pocket that define the wavelength of their spectral maxima. Lastly, we found that dinoflagellate rhodopsins with a TCP motif in the third transmembrane helix and a metagenomic homolog exhibit channel activity.

Keywords: algae; channelrhodopsins; optogenetics; photosensory reception

References

  1. Proc Natl Acad Sci U S A. 2016 Jan 26;113(4):822-9 - PubMed
  2. Nature. 1978 Feb 2;271(5644):476-8 - PubMed
  3. Proc Natl Acad Sci U S A. 2019 May 7;116(19):9380-9389 - PubMed
  4. Curr Biol. 2013 Aug 5;23(15):1399-408 - PubMed
  5. Nat Commun. 2018 Jan 25;9(1):373 - PubMed
  6. Cell. 2011 Dec 23;147(7):1446-57 - PubMed
  7. Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):E1273-81 - PubMed
  8. J Chem Theory Comput. 2011 Feb 8;7(2):525-37 - PubMed
  9. Science. 2002 Jun 28;296(5577):2395-8 - PubMed
  10. Curr Biol. 2018 Aug 20;28(16):2570-2580.e6 - PubMed
  11. J Biol Chem. 2008 Dec 12;283(50):35033-41 - PubMed
  12. mBio. 2020 Apr 21;11(2): - PubMed
  13. BMC Genomics. 2018 Jun 14;19(1):458 - PubMed
  14. Science. 2014 Apr 25;344(6182):420-4 - PubMed
  15. Science. 2015 Aug 7;349(6248):647-50 - PubMed
  16. Microbiol Rev. 1980 Dec;44(4):572-630 - PubMed
  17. Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):13940-5 - PubMed
  18. Biochim Biophys Acta Bioenerg. 2021 Feb 1;1862(2):148349 - PubMed
  19. Biochemistry. 2016 Apr 26;55(16):2371-80 - PubMed
  20. Commun Biol. 2021 May 14;4(1):578 - PubMed
  21. Cell. 2010 Apr 2;141(1):154-165 - PubMed
  22. Plant Cell. 2017 Oct;29(10):2498-2518 - PubMed
  23. Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):2118-2123 - PubMed
  24. Annu Rev Biochem. 2017 Jun 20;86:845-872 - PubMed
  25. J Biol Chem. 2013 Oct 11;288(41):29911-22 - PubMed
  26. Nat Neurosci. 2015 Sep;18(9):1213-25 - PubMed
  27. Biochim Biophys Acta. 2014 May;1837(5):626-42 - PubMed
  28. Proc Natl Acad Sci U S A. 2021 Feb 9;118(6): - PubMed
  29. Environ Microbiol. 2017 Oct;19(10):3909-3919 - PubMed
  30. ISME J. 2021 Jun;15(6):1767-1781 - PubMed
  31. Biophys J. 2013 Feb 19;104(4):807-17 - PubMed
  32. Proc Natl Acad Sci U S A. 2020 Sep 15;117(37):22833-22840 - PubMed
  33. Sci Rep. 2016 Dec 22;6:39734 - PubMed
  34. Photochem Photobiol Sci. 2009 Mar;8(3):328-36 - PubMed
  35. Nucleic Acids Res. 2019 Jul 2;47(W1):W256-W259 - PubMed
  36. Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):E317-25 - PubMed
  37. Genome Biol. 2015 Feb 11;16:30 - PubMed
  38. Nat Methods. 2019 Nov;16(11):1176-1184 - PubMed
  39. J Protozool. 1974 May;21(2):312-5 - PubMed
  40. Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8689-94 - PubMed
  41. Science. 2017 Nov 24;358(6366): - PubMed
  42. Proc Natl Acad Sci U S A. 2016 Apr 5;113(14):E1993-2000 - PubMed
  43. PLoS Comput Biol. 2011 Oct;7(10):e1002195 - PubMed
  44. Mol Biol Evol. 2020 May 1;37(5):1530-1534 - PubMed
  45. mBio. 2011 Jun 21;2(3):e00115-11 - PubMed
  46. Nat Commun. 2018 Sep 26;9(1):3949 - PubMed
  47. Elife. 2019 Jan 07;8: - PubMed
  48. Mol Biol Evol. 2018 Feb 1;35(2):518-522 - PubMed
  49. Biophys J. 2005 Dec;89(6):4310-9 - PubMed
  50. Nat Commun. 2019 Jul 25;10(1):3315 - PubMed
  51. J Phys Chem Lett. 2020 Aug 6;11(15):6214-6218 - PubMed
  52. J Gen Physiol. 1970 Jun;55(6):802-21 - PubMed
  53. PLoS Comput Biol. 2017 Oct 23;13(10):e1005786 - PubMed
  54. Nucleic Acids Res. 2021 Jan 8;49(D1):D1004-D1011 - PubMed
  55. Nat Commun. 2011 Feb 08;2:183 - PubMed
  56. Nature. 2012 Jan 22;482(7385):369-74 - PubMed
  57. Nat Commun. 2020 Nov 11;11(1):5707 - PubMed
  58. Curr Biol. 2020 Dec 21;30(24):4910-4920.e5 - PubMed
  59. Front Physiol. 2019 Jun 06;10:675 - PubMed
  60. Nat Methods. 2019 Jul;16(7):603-606 - PubMed
  61. Expert Opin Drug Discov. 2021 Jan;16(1):1-5 - PubMed
  62. Nature. 2018 Sep;561(7723):343-348 - PubMed
  63. Sci Rep. 2015 Oct 07;5:14807 - PubMed
  64. Science. 2014 Apr 25;344(6182):409-12 - PubMed
  65. Sci Rep. 2017 Nov 2;7(1):14957 - PubMed

Publication Types

Grant support