Display options
Share it on

mBio. 2021 Aug 31;12(4):e0124721. doi: 10.1128/mBio.01247-21. Epub 2021 Jul 27.

Plasmodium vivax Infection Alters Mitochondrial Metabolism in Human Monocytes.

mBio

Suelen Queiroz Diniz, Andréa Teixeira-Carvalho, Maria Marta Figueiredo, Pedro Augusto Carvalho Costa, Bruno Coelho Rocha, Olindo Assis Martins-Filho, Ricardo Gonçalves, Dhélio Batista Pereira, Mauro Shugiro Tada, Fabiano Oliveira, Ricardo Tostes Gazzinelli, Lis Ribeiro do Valle Antonelli

Affiliations

  1. Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil.
  2. Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
  3. Instituto de Ciências Biológicas, Departamento de Patologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
  4. Centro de Pesquisas em Medicina Tropical de Rondônia, Porto Velho, Rondônia, Brazil.
  5. National Institutes of Healthgrid.94365.3d, NIAID, Laboratory of Malaria and Vector Research, Rockville, Maryland, USA.

PMID: 34311577 PMCID: PMC8406267 DOI: 10.1128/mBio.01247-21

Abstract

Monocytes play an important role in the host defense against Plasmodium vivax as the main source of inflammatory cytokines and mitochondrial reactive oxygen species (mROS). Here, we show that monocyte metabolism is altered during human P. vivax malaria, with mitochondria playing a major function in this switch. The process involves a reprograming in which the cells increase glucose uptake and produce ATP via glycolysis instead of oxidative phosphorylation. P. vivax infection results in dysregulated mitochondrial gene expression and in altered membrane potential leading to mROS increase rather than ATP production. When monocytes were incubated with P. vivax-infected reticulocytes, mitochondria colocalized with phagolysosomes containing parasites representing an important source mROS. Importantly, the mitochondrial enzyme superoxide dismutase 2 (SOD2) is simultaneously induced in monocytes from malaria patients. Taken together, the monocyte metabolic reprograming with an increased mROS production may contribute to protective responses against P. vivax while triggering immunomodulatory mechanisms to circumvent tissue damage.

Keywords: P. vivax; malaria; metabolism; mitochondria; mitochondrial metabolism; monocytes; reactive oxygen species

References

  1. Blood. 2009 Dec 24;114(27):5522-31 - PubMed
  2. Immunity. 2015 Mar 17;42(3):419-30 - PubMed
  3. Nature. 2011 Apr 28;472(7344):476-80 - PubMed
  4. Int J Parasitol. 2004 Feb;34(2):163-89 - PubMed
  5. Biochem J. 2009 Jan 1;417(1):1-13 - PubMed
  6. Nat Rev Immunol. 2016 Sep;16(9):553-65 - PubMed
  7. Cell. 2006 Oct 20;127(2):397-408 - PubMed
  8. J Exp Med. 2017 Jul 3;214(7):1913-1923 - PubMed
  9. Cell. 2016 Oct 6;167(2):457-470.e13 - PubMed
  10. Biochemistry (Mosc). 2005 Feb;70(2):200-14 - PubMed
  11. J Bacteriol. 1972 Oct;112(1):268-75 - PubMed
  12. J Neurochem. 2002 Mar;80(5):780-7 - PubMed
  13. J Biol Chem. 2014 Mar 14;289(11):7884-96 - PubMed
  14. IUBMB Life. 2013 Mar;65(3):191-201 - PubMed
  15. J Immunol. 2015 Jun 15;194(12):6082-9 - PubMed
  16. J Infect Dis. 1999 Jan;179(1):217-22 - PubMed
  17. Nat Genet. 2000 Dec;26(4):435-9 - PubMed
  18. Physiol Rev. 1979 Jul;59(3):527-605 - PubMed
  19. J Biol Chem. 2004 Feb 6;279(6):4127-35 - PubMed
  20. Biochem J. 1986 Oct 1;239(1):121-5 - PubMed
  21. Immunity. 2013 Apr 18;38(4):633-43 - PubMed
  22. Immunity. 2003 Jul;19(1):71-82 - PubMed
  23. Nucleic Acids Res. 2015 Apr 20;43(7):e47 - PubMed
  24. Trends Parasitol. 2012 Oct;28(10):408-16 - PubMed
  25. Front Immunol. 2018 Jul 12;9:1605 - PubMed
  26. Immunity. 2010 Sep 24;33(3):375-86 - PubMed
  27. Biol Chem. 2003 Apr;384(4):551-66 - PubMed
  28. Biochem J. 2004 Sep 1;382(Pt 2):511-7 - PubMed
  29. Biomed Res Int. 2015;2015:351289 - PubMed
  30. Mol Cell. 2012 Oct 26;48(2):158-67 - PubMed
  31. Redox Biol. 2019 Sep;26:101255 - PubMed
  32. Nat Rev Immunol. 2004 Mar;4(3):169-80 - PubMed
  33. PLoS Negl Trop Dis. 2012;6(6):e1710 - PubMed
  34. Exp Gerontol. 2010 Aug;45(7-8):466-72 - PubMed
  35. Immunol Rev. 2004 Oct;201:35-47 - PubMed
  36. Int J Mol Sci. 2012 Dec 03;13(12):16346-72 - PubMed
  37. J Basic Microbiol. 2015 Sep;55(9):1053-63 - PubMed
  38. FEMS Yeast Res. 2006 Sep;6(6):869-82 - PubMed
  39. Pharm World Sci. 1996 Aug;18(4):121-9 - PubMed
  40. Nat Biotechnol. 2008 Mar;26(3):317-25 - PubMed
  41. Blood. 2011 Aug 4;118(5):e16-31 - PubMed
  42. Cells. 2018 Dec 17;7(12): - PubMed
  43. Immunity. 2015 Mar 17;42(3):406-17 - PubMed
  44. PLoS One. 2015 Feb 25;10(2):e0116007 - PubMed
  45. Curr Opin Genet Dev. 2016 Jun;38:31-37 - PubMed
  46. Infect Immun. 2005 Aug;73(8):4941-7 - PubMed
  47. PLoS Pathog. 2014 Sep 18;10(9):e1004393 - PubMed
  48. Am J Physiol. 1991 May;260(5 Pt 1):C910-6 - PubMed
  49. BMC Bioinformatics. 2012 Mar 13;13 Suppl 2:S11 - PubMed
  50. Blood. 2010 Jan 21;115(3):e10-9 - PubMed
  51. Nat Rev Immunol. 2004 Mar;4(3):181-9 - PubMed
  52. Free Radic Biol Med. 2009 Jan 15;46(2):271-81 - PubMed
  53. J Biol Chem. 2003 Sep 19;278(38):36027-31 - PubMed
  54. Toxicol Lett. 2005 Jul 4;157(3):175-88 - PubMed
  55. Cell Microbiol. 2007 Nov;9(11):2610-28 - PubMed
  56. Clin Biochem. 2003 Feb;36(1):71-8 - PubMed
  57. Annu Rev Biochem. 2007;76:723-49 - PubMed
  58. EMBO J. 2002 Jan 15;21(1-2):22-30 - PubMed
  59. Nat Microbiol. 2016 Dec 19;2:16246 - PubMed

Publication Types

Grant support