Display options
Share it on

mBio. 2021 Aug 31;12(4):e0070321. doi: 10.1128/mBio.00703-21. Epub 2021 Aug 03.

The Dynamic Transition of Persistence toward the Viable but Nonculturable State during Stationary Phase Is Driven by Protein Aggregation.

mBio

Liselot Dewachter, Celien Bollen, Dorien Wilmaerts, Elen Louwagie, Pauline Herpels, Paul Matthay, Ladan Khodaparast, Laleh Khodaparast, Frederic Rousseau, Joost Schymkowitz, Jan Michiels

Affiliations

  1. Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.
  2. Center for Microbiology, VIB-KU Leuven, Leuven, Belgium.
  3. Switch Laboratory, Center for Brain and Disease Research, VIB-KU Leuven, Leuven, Belgium.
  4. Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.

PMID: 34340538 PMCID: PMC8406143 DOI: 10.1128/mBio.00703-21

Abstract

Decades of research into bacterial persistence has been unable to fully characterize this antibiotic-tolerant phenotype, thereby hampering the development of therapies effective against chronic infections. Although some active persister mechanisms have been identified, the prevailing view is that cells become persistent because they enter a dormant state. We therefore characterized starvation-induced dormancy in Escherichia coli. Our findings indicate that dormancy develops gradually; persistence strongly increases during stationary phase and decreases again as persisters enter the viable but nonculturable (VBNC) state. Importantly, we show that dormancy development is tightly associated with progressive protein aggregation, which occurs concomitantly with ATP depletion during starvation. Persisters contain protein aggregates in an early developmental stage, while VBNC cells carry more mature aggregates. Finally, we show that at least one persister protein, ObgE, works by triggering aggregation, even at endogenous levels, and thereby changing the dynamics of persistence and dormancy development. These findings provide evidence for a genetically controlled, gradual development of persisters and VBNC cells through protein aggregation.

Keywords: ObgE; VBNC; antibiotic resistance; antibiotic tolerance; chronic infection; dormancy; persistence; protein aggregation; stationary phase

References

  1. Mol Cell. 2019 Jan 3;73(1):143-156.e4 - PubMed
  2. Nat Rev Microbiol. 2019 Jul;17(7):441-448 - PubMed
  3. Protein Eng. 2002 Feb;15(2):153-60 - PubMed
  4. Mol Cell. 2015 Jul 2;59(1):9-21 - PubMed
  5. Microbiol Mol Biol Rev. 2011 Sep;75(3):507-42, second and third pages of table of contents - PubMed
  6. J Bacteriol. 2004 Dec;186(24):8172-80 - PubMed
  7. FEMS Microbiol Rev. 2020 Jan 1;44(1):54-72 - PubMed
  8. Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4201-6 - PubMed
  9. J Antimicrob Chemother. 2003 May;51(5):1109-17 - PubMed
  10. Nat Microbiol. 2016 Apr 18;1:16051 - PubMed
  11. PLoS Pathog. 2021 Jan 13;17(1):e1009194 - PubMed
  12. Mol Cell. 2016 Apr 21;62(2):284-294 - PubMed
  13. Sci Rep. 2016 May 04;6:25100 - PubMed
  14. Science. 2004 Sep 10;305(5690):1622-5 - PubMed
  15. BMC Biol. 2017 Dec 21;15(1):121 - PubMed
  16. Mol Syst Biol. 2006;2:2006.0008 - PubMed
  17. Science. 2017 May 19;356(6339):753-756 - PubMed
  18. mBio. 2015 Sep 01;6(5):e00731-15 - PubMed
  19. Antimicrob Agents Chemother. 2012 Sep;56(9):4922-6 - PubMed
  20. Mol Cell. 2016 Jul 7;63(1):86-96 - PubMed
  21. Cell Rep. 2012 Mar 29;1(3):251-64 - PubMed
  22. Environ Microbiol. 2018 Jun;20(6):2038-2048 - PubMed
  23. FEMS Microbiol Rev. 2010 Jul;34(4):415-25 - PubMed
  24. PLoS Biol. 2018 Aug 28;16(8):e2003853 - PubMed
  25. Nat Rev Microbiol. 2015 May;13(5):298-309 - PubMed
  26. Antimicrob Agents Chemother. 2013 Jul;57(7):3230-9 - PubMed
  27. Mol Microbiol. 2002 Dec;46(5):1391-7 - PubMed
  28. Nat Commun. 2018 Feb 28;9(1):866 - PubMed
  29. Front Microbiol. 2017 Jun 28;8:1193 - PubMed
  30. Nat Commun. 2019 Mar 11;10(1):1155 - PubMed
  31. DNA Res. 2005;12(5):291-9 - PubMed
  32. Mol Cell. 2019 Sep 5;75(5):1031-1042.e4 - PubMed
  33. Appl Environ Microbiol. 1995 Jul;61(7):2620-3 - PubMed
  34. Nat Microbiol. 2016 Jun 20;1(7):16077 - PubMed
  35. mBio. 2017 Feb 7;8(1): - PubMed
  36. Environ Microbiol. 2007 Apr;9(4):869-79 - PubMed
  37. FEMS Microbiol Rev. 2017 May 1;41(3):219-251 - PubMed
  38. PLoS Biol. 2014 May 20;12(5):e1001866 - PubMed
  39. Science. 2014 Jan 10;343(6167):204-8 - PubMed
  40. Trends Genet. 2019 Jun;35(6):401-411 - PubMed
  41. Front Microbiol. 2014 Jun 02;5:258 - PubMed
  42. PLoS One. 2014 Oct 17;9(10):e110504 - PubMed
  43. Antimicrob Agents Chemother. 2013 Mar;57(3):1468-73 - PubMed
  44. Int J Food Microbiol. 2006 Mar 1;107(1):83-91 - PubMed
  45. PLoS One. 2013;8(1):e54737 - PubMed
  46. Nucleic Acids Res. 2000 Jan 1;28(1):33-6 - PubMed
  47. J Bacteriol. 2018 Sep 24;200(20): - PubMed
  48. Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):8937-42 - PubMed
  49. FEMS Microbiol Lett. 2004 Jan 15;230(1):13-8 - PubMed
  50. PLoS One. 2014 Sep 04;9(9):e106938 - PubMed
  51. J Bacteriol. 2011 Jul;193(14):3598-605 - PubMed
  52. Nat Biotechnol. 2004 Oct;22(10):1302-6 - PubMed
  53. Mol Biol Evol. 2017 Aug 1;34(8):2115-2122 - PubMed
  54. Nucleic Acids Res. 2019 Jan 8;47(D1):D309-D314 - PubMed
  55. mBio. 2018 Apr 17;9(2): - PubMed

Publication Types