Display options
Share it on

Nucleic Acids Res. 2021 Nov 08;49(19):11119-11133. doi: 10.1093/nar/gkab903.

The coordinated replication of Vibrio cholerae's two chromosomes required the acquisition of a unique domain by the RctB initiator.

Nucleic acids research

Florian Fournes, Theophile Niault, Jakub Czarnecki, Alvise Tissier-Visconti, Didier Mazel, Marie-Eve Val

Affiliations

  1. Institut Pasteur, Université de Paris, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris 75015, France.
  2. Centre National de la Recherche Scientifique, UMR3525, Paris 75015, France.
  3. Sorbonne Université, Collège Doctoral, Paris 75005, France.
  4. University of Warsaw, Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, Warsaw 02-096, Poland.

PMID: 34643717 PMCID: PMC8565311 DOI: 10.1093/nar/gkab903

Abstract

Vibrio cholerae, the pathogenic bacterium that causes cholera, has two chromosomes (Chr1, Chr2) that replicate in a well-orchestrated sequence. Chr2 initiation is triggered only after the replication of the crtS site on Chr1. The initiator of Chr2 replication, RctB, displays activities corresponding with its different binding sites: initiator at the iteron sites, repressor at the 39m sites, and trigger at the crtS site. The mechanism by which RctB relays the signal to initiate Chr2 replication from crtS is not well-understood. In this study, we provide new insights into how Chr2 replication initiation is regulated by crtS via RctB. We show that crtS (on Chr1) acts as an anti-inhibitory site by preventing 39m sites (on Chr2) from repressing initiation. The competition between these two sites for RctB binding is explained by the fact that RctB interacts with crtS and 39m via the same DNA-binding surface. We further show that the extreme C-terminal tail of RctB, essential for RctB self-interaction, is crucial for the control exerted by crtS. This subregion of RctB is conserved in all Vibrio, but absent in other Rep-like initiators. Hence, the coordinated replication of both chromosomes likely results from the acquisition of this unique domain by RctB.

© The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.

References

  1. mBio. 2017 Apr 18;8(2): - PubMed
  2. Nucleic Acids Res. 2012 Jul;40(13):6026-38 - PubMed
  3. BMC Biol. 2020 Apr 29;18(1):43 - PubMed
  4. Cold Spring Harb Perspect Biol. 2016 Jan 04;8(1):a018168 - PubMed
  5. New Biol. 1992 May;4(5):569-80 - PubMed
  6. Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):936-41 - PubMed
  7. Cell. 2003 Aug 22;114(4):521-30 - PubMed
  8. Org Biomol Chem. 2010 Feb 21;8(4):788-92 - PubMed
  9. Front Microbiol. 2018 Aug 07;9:1833 - PubMed
  10. Nucleic Acids Res. 2014 Dec 1;42(21):13134-49 - PubMed
  11. Nucleic Acids Res. 2014;42(16):10538-49 - PubMed
  12. Mol Gen Genet. 1996 Nov 27;253(1-2):42-9 - PubMed
  13. Elife. 2020 Dec 15;9: - PubMed
  14. PLoS Genet. 2018 Mar 5;14(3):e1007251 - PubMed
  15. EMBO J. 2007 Jul 11;26(13):3124-31 - PubMed
  16. PLoS Genet. 2012;8(6):e1002778 - PubMed
  17. Mol Microbiol. 2007 Nov;66(4):1016-28 - PubMed
  18. PLoS Genet. 2014 Feb 27;10(2):e1004184 - PubMed
  19. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5752-6 - PubMed
  20. PLoS Genet. 2018 May 24;14(5):e1007426 - PubMed
  21. Nature. 2021 Aug;596(7873):583-589 - PubMed
  22. Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):12051-6 - PubMed
  23. Microbiol Spectr. 2014 Dec;2(6): - PubMed
  24. Sci Rep. 2012;2:509 - PubMed
  25. Protein Sci. 2021 Jan;30(1):70-82 - PubMed
  26. Front Microbiol. 2018 Sep 10;9:2103 - PubMed
  27. Nucleic Acids Res. 2018 Nov 2;46(19):10145-10156 - PubMed
  28. Nucleic Acids Res. 2020 Nov 4;48(19):11016-11029 - PubMed
  29. Microbiol Mol Biol Rev. 2016 Nov 30;81(1): - PubMed
  30. Front Mol Biosci. 2016 Aug 11;3:39 - PubMed
  31. Nucleic Acids Res. 2017 Apr 20;45(7):3724-3737 - PubMed
  32. J Bacteriol. 2006 Sep;188(17):6419-24 - PubMed
  33. Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6199-204 - PubMed
  34. J Biol Chem. 2008 Mar 28;283(13):8351-62 - PubMed
  35. Nucleic Acids Res. 2021 Apr 6;49(6):3394-3408 - PubMed
  36. J Bacteriol. 2005 Nov;187(21):7167-75 - PubMed
  37. Biomol Detect Quantif. 2016 Nov 03;10:34-46 - PubMed
  38. Nucleic Acids Res. 1997 Jan 15;25(2):447-8 - PubMed
  39. Microbiol Mol Biol Rev. 2017 Aug 9;81(3): - PubMed
  40. Plasmid. 2012 Mar;67(2):102-10 - PubMed
  41. Trends Microbiol. 2010 Apr;18(4):141-8 - PubMed
  42. Sci Adv. 2016 Apr 22;2(4):e1501914 - PubMed
  43. PLoS Genet. 2010 May 06;6(5):e1000939 - PubMed

Publication Types

Grant support