Display options
Share it on

Nat Microbiol. 2021 Nov;6(11):1367-1382. doi: 10.1038/s41564-021-00970-4. Epub 2021 Oct 21.

Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut.

Nature microbiology

Martin F Laursen, Mikiyasu Sakanaka, Nicole von Burg, Urs Mörbe, Daniel Andersen, Janne Marie Moll, Ceyda T Pekmez, Aymeric Rivollier, Kim F Michaelsen, Christian Mølgaard, Mads Vendelbo Lind, Lars O Dragsted, Takane Katayama, Henrik L Frandsen, Anne Marie Vinggaard, Martin I Bahl, Susanne Brix, William Agace, Tine R Licht, Henrik M Roager

Affiliations

  1. National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark.
  2. Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Ishikawa, Japan.
  3. Mucosal Immunology Group, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark.
  4. Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark.
  5. Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, Denmark.
  6. Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
  7. Immunology Section, BMC D14, Department of Experimental Medicine, Lund University, Lund, Sweden.
  8. National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark. [email protected].
  9. National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark. [email protected].
  10. Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, Denmark. [email protected].

PMID: 34675385 PMCID: PMC8556157 DOI: 10.1038/s41564-021-00970-4

Abstract

Breastfeeding profoundly shapes the infant gut microbiota, which is critical for early life immune development, and the gut microbiota can impact host physiology in various ways, such as through the production of metabolites. However, few breastmilk-dependent microbial metabolites mediating host-microbiota interactions are currently known. Here, we demonstrate that breastmilk-promoted Bifidobacterium species convert aromatic amino acids (tryptophan, phenylalanine and tyrosine) into their respective aromatic lactic acids (indolelactic acid, phenyllactic acid and 4-hydroxyphenyllactic acid) via a previously unrecognized aromatic lactate dehydrogenase (ALDH). The ability of Bifidobacterium species to convert aromatic amino acids to their lactic acid derivatives was confirmed using monocolonized mice. Longitudinal profiling of the faecal microbiota composition and metabolome of Danish infants (n = 25), from birth until 6 months of age, showed that faecal concentrations of aromatic lactic acids are correlated positively with the abundance of human milk oligosaccharide-degrading Bifidobacterium species containing the ALDH, including Bifidobacterium longum, B. breve and B. bifidum. We further demonstrate that faecal concentrations of Bifidobacterium-derived indolelactic acid are associated with the capacity of these samples to activate in vitro the aryl hydrocarbon receptor (AhR), a receptor important for controlling intestinal homoeostasis and immune responses. Finally, we show that indolelactic acid modulates ex vivo immune responses of human CD4

© 2021. The Author(s).

References

  1. Victora, C. G. et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet 387, 475–490 (2016). - PubMed
  2. Horta, B. L., Loret de Mola, C. & Victora, C. G. Long-term consequences of breastfeeding on cholesterol, obesity, systolic blood pressure and type 2 diabetes: a systematic review and meta-analysis. Acta Paediatr. 104, 30–37 (2015). - PubMed
  3. Oddy, W. H. Breastfeeding, childhood asthma, and allergic disease. Ann. Nutr. Metab. 70, 26–36 (2017). - PubMed
  4. Laursen, M. F. et al. Infant gut microbiota development is driven by transition to family foods independent of maternal obesity. Msphere https://doi.org/10.1128/mSphere.00069-15 (2016). - PubMed
  5. Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015). - PubMed
  6. Stewart, C. J. et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 562, 583–588 (2018). - PubMed
  7. Bode, L. The functional biology of human milk oligosaccharides. Early Hum. Dev. 91, 619–622 (2015). - PubMed
  8. Gensollen, T., Iyer, S. S., Kasper, D. L. & Blumberg, R. S. How colonization by microbiota in early life shapes the immune system. Science 352, 539–544 (2016). - PubMed
  9. Stokholm, J. et al. Maturation of the gut microbiome and risk of asthma in childhood. Nat. Commun. 9, 141 (2018). - PubMed
  10. Fujimura, K. E. et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat. Med. 22, 1187–1191 (2016). - PubMed
  11. Khosravi, A. & Mazmanian, S. K. Disruption of the gut microbiome as a risk factor for microbial infections. Curr. Opin. Microbiol. 16, 221–227 (2013). - PubMed
  12. Fukuda, S. et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469, 543–547 (2011). - PubMed
  13. Vatanen, T. et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 562, 589–594 (2018). - PubMed
  14. Roager, H. M. & Licht, T. R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 9, 3294 (2018). - PubMed
  15. Zelante, T. et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39, 372–385 (2013). - PubMed
  16. Cervantes-Barragan, L. et al. Lactobacillus reuteri induces gut intraepithelial CD4 - PubMed
  17. Natividad, J. M. et al. Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell Metab. https://doi.org/10.1016/j.cmet.2018.07.001 (2018). - PubMed
  18. Dodd, D. et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 551, 648–652 (2017). - PubMed
  19. Guo, X. et al. Innate lymphoid cells control early colonization resistance against intestinal pathogens through ID2-dependent regulation of the microbiota. Immunity 42, 731–743 (2015). - PubMed
  20. Hoyles, L. et al. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat. Med. 24, 1070–1080 (2018). - PubMed
  21. Krishnan, S. et al. Gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages. Cell Rep. 23, 1099–1111 (2018). - PubMed
  22. Madsen, A. L., Schack-Nielsen, L., Larnkjaer, A., Mølgaard, C. & Michaelsen, K. F. Determinants of blood glucose and insulin in healthy 9-month-old term Danish infants; the SKOT cohort. Diabet. Med. 27, 1350–1357 (2010). - PubMed
  23. Kato, K. et al. Age-related changes in the composition of gut bifidobacterium species. Curr. Microbiol. 74, 987–995 (2017). - PubMed
  24. Koga, Y. et al. Age-associated effect of kestose on Faecalibacterium prausnitzii and symptoms in the atopic dermatitis infants. Pediatr. Res. 80, 844–851 (2016). - PubMed
  25. Li, X., Jiang, B., Pan, B., Mu, W. & Zhang, T. Purification and partial characterization of Lactobacillus species SK007 lactate dehydrogenase (LDH) catalyzing phenylpyruvic acid (PPA) conversion into phenyllactic acid (PLA). J. Agric. Food Chem. 56, 2392–2399 (2008). - PubMed
  26. Koide, S., Iwata, S., Matsuzawa, H. & Ohta, T. Crystallization of allosteric L-lactate dehydrogenase from Thermus caldophilus and preliminary crystallographic data. J. Biochem. 109, 6–7 (1991). - PubMed
  27. Takashi, M., So, I., Hiroshi, S., Haruhiko, M. & Takahisa, O. Sequence and characteristics of the Bifidobacterium longum gene encoding L-lactate dehydrogenase and the primary structure of the enzyme: a new feature of the allosteric site. Gene 85, 161–168 (1989). - PubMed
  28. Bottacini, F. et al. Global transcriptional landscape and promoter mapping of the gut commensal Bifidobacterium breve UCC2003. BMC Genomics 18, 991 (2017). - PubMed
  29. Hirayama, Y. et al. Development of a double-crossover markerless gene deletion system in Bifidobacterium longum: functional analysis of the α-galactosidase gene for raffinose assimilation. Appl. Environ. Microbiol. 78, 4984–4994 (2012). - PubMed
  30. Matsumura, H., Takeuchi, A. & Kano, Y. Construction of Escherichia coli–Bifidobacterium longum shuttle vector transforming B. longum 105-A and 108-A. Biosci. Biotechnol. Biochem. 61, 1211–1212 (1997). - PubMed
  31. Mallick, H. et al. Multivariable association discovery in population-scale meta-omics studies 3. Preprint at bioRxiv https://doi.org/10.1101/2021.01.20.427420 (2021). - PubMed
  32. Bakdash, J. Z. & Marusich, L. R. Repeated measures correlation. Front. Psychol. 8, 456 (2017). - PubMed
  33. Alfa, M. J. et al. An outbreak of necrotizing enterocolitis associated with a novel Clostridium species in a neonatal intensive care unit. Clin. Infect. Dis. 35, S101–S105 (2002). - PubMed
  34. Butel, M.-J. et al. Conditions of bifidobacterial colonization in preterm infants: a prospective analysis. J. Pediatr. Gastroenterol. Nutr. 44, 577–582 (2007). - PubMed
  35. Moles, L. et al. Bacterial diversity in meconium of preterm neonates and evolution of their fecal microbiota during the first month of life. PLoS ONE 8, e66986 (2013). - PubMed
  36. Arboleya, S. et al. Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiol. Ecol. 79, 763–772 (2012). - PubMed
  37. Korpela, K. et al. Intestinal microbiota development and gestational age in preterm neonates. Sci. Rep. 8, 2453 (2018). - PubMed
  38. Peters, A. et al. Metabolites of lactic acid bacteria present in fermented foods are highly potent agonists of human hydroxycarboxylic acid receptor 3. PLoS Genet. 15, e1008145 (2019). - PubMed
  39. Ahmed, K. et al. Deorphanization of GPR109B as a receptor for the β-oxidation intermediate 3-OH-octanoic acid and its role in the regulation of lipolysis. J. Biol. Chem. 284, 21928–21933 (2009). - PubMed
  40. Irukayama-Tomobe, Y. et al. Aromatic D-amino acids act as chemoattractant factors for human leukocytes through a G protein-coupled receptor, GPR109B. Proc. Natl Acad. Sci. USA 106, 3930–3934 (2009). - PubMed
  41. Hubbard, T. D. et al. Adaptation of the human aryl hydrocarbon receptor to sense microbiota-derived indoles. Sci. Rep. 5, 12689 (2015). - PubMed
  42. Quintana, F. J. et al. Control of T - PubMed
  43. Veldhoen, M., Hirota, K., Christensen, J., O’Garra, A. & Stockinger, B. Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells. J. Exp. Med. 206, 43–49 (2009). - PubMed
  44. Veldhoen, M. et al. The aryl hydrocarbon receptor links T - PubMed
  45. Komura, K., Hayashi, S. I., Makino, I., Poellinger, L. & Tanaka, H. Aryl hydrocarbon receptor/dioxin receptor in human monocytes and macrophages. Mol. Cell. Biochem. 226, 107–117 (2001). - PubMed
  46. Offermanns, S. Hydroxy-carboxylic acid receptor actions in metabolism. Trends Endocrinol. Metab. 28, 227–236 (2017). - PubMed
  47. Tamburini, S., Shen, N., Wu, H. C. & Clemente, J. C. The microbiome in early life: implications for health outcomes. Nat. Med. 22, 713–722 (2016). - PubMed
  48. Dominguez-Bello, M. G., Godoy-Vitorino, F., Knight, R. & Blaser, M. J. Role of the microbiome in human development. Gut 68, 1108–1114 (2019). - PubMed
  49. Yamada, C. et al. Molecular insight into evolution of symbiosis between breast-fed infants and a member of the human gut microbiome Bifidobacterium longum. Cell Chem. Biol. 24, 515–524 (2017). - PubMed
  50. Katayama, T. Host-derived glycans serve as selected nutrients for the gut microbe: human milk oligosaccharides and bifidobacteria. Biosci. Biotechnol. Biochem. 80, 621–632 (2016). - PubMed
  51. Thomson, P., Medina, D. A. & Garrido, D. Human milk oligosaccharides and infant gut bifidobacteria: molecular strategies for their utilization. Food Microbiol 75, 37–46 (2018). - PubMed
  52. Sakanaka, M. et al. Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacteria–infant symbiosis. Sci. Adv. 5, eaaw7696 (2019). - PubMed
  53. Sakurai, T., Odamaki, T. & Xiao, J.-Z. Production of indole-3-lactic acid by bifidobacterium strains isolated from human infants. Microorganisms 7, 340 (2019). - PubMed
  54. Meng, D. et al. Indole-3-lactic acid, a metabolite of tryptophan, secreted by Bifidobacterium longum subspecies infantis is anti-inflammatory in the immature intestine. Pediatr. Res. 88, 209–217 (2020). - PubMed
  55. Ehrlich, A. M. et al. Indole-3-lactic acid associated with Bifidobacterium-dominated microbiota significantly decreases inflammation in intestinal epithelial cells. BMC Microbiol. 20, 357 (2020). - PubMed
  56. Neil, J. A. et al. IFN-I and IL-22 mediate protective effects of intestinal viral infection. Nat. Microbiol. 4, 1737–1749 (2019). - PubMed
  57. Turner, J.-E., Stockinger, B. & Helmby, H. IL-22 mediates goblet cell hyperplasia and worm expulsion in intestinal helminth infection. PLoS Pathog. 9, e1003698 (2013). - PubMed
  58. Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14, 282–289 (2008). - PubMed
  59. Sugimoto, K. et al. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J. Clin. Invest. 118, 534–544 (2008). - PubMed
  60. Keir, M. E., Yi, T., Lu, T. T. & Ghilardi, N. The role of IL-22 in intestinal health and disease. J. Exp. Med. 217, e20192195 (2020). - PubMed
  61. Natividad, J. M. et al. Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell Metab. 28, 737–749 (2018). - PubMed
  62. Metidji, A. et al. The environmental sensor AHR protects from inflammatory damage by maintaining intestinal stem cell homeostasis and barrier integrity. Immunity 49, 353–362 (2018). - PubMed
  63. Gomez de Aguero, M. et al. The maternal microbiota drives early postnatal innate immune development. Science 351, 1296–1302 (2016). - PubMed
  64. Kiss, E. A. et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 334, 1561–1565 (2011). - PubMed
  65. Qiu, J. et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36, 92–104 (2012). - PubMed
  66. Lamas, B. et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 22, 598–605 (2016). - PubMed
  67. Dant, T. A. et al. T-cell expression of AhR inhibits the maintenance of pT - PubMed
  68. Wilck, N. et al. Salt-responsive gut commensal modulates T - PubMed
  69. Quintana, F. J. et al. Control of T - PubMed
  70. Ning, Y. et al. Antibacterial activity of phenyllactic acid against Listeria monocytogenes and Escherichia coli by dual mechanisms. Food Chem. 228, 533–540 (2017). - PubMed
  71. Rodríguez, N., Salgado, J. M., Cortés, S. & Domínguez, J. M. Antimicrobial activity of D-3-phenyllactic acid produced by fed-batch process against Salmonella enterica. Food Control 25, 274–284 (2012). - PubMed
  72. Narayanan, T. K. & Rao, G. R. Beta-indoleethanol and beta-indolelactic acid production by Candida species: their antibacterial and autoantibiotic action. Antimicrob. Agents Chemother. 9, 375–380 (1976). - PubMed
  73. Honoré, A. H. et al. Metabolic footprinting for investigation of antifungal properties of Lactobacillus paracasei. Anal. Bioanal. Chem. 408, 83–96 (2016). - PubMed
  74. Madsen, A. L., Larnkjær, A., Mølgaard, C. & Michaelsen, K. F. IGF-I and IGFBP-3 in healthy 9 month old infants from the SKOT cohort: breastfeeding, diet, and later obesity. Growth Horm. IGF Res. 21, 199–204 (2011). - PubMed
  75. Laursen, M. F. et al. Having older siblings is associated with gut microbiota development during early childhood. BMC Microbiol. 15, 154 (2015). - PubMed
  76. Laursen, M. F., Dalgaard, M. D. & Bahl, M. I. Genomic GC-content affects the accuracy of 16S rRNA gene sequencing based microbial profiling due to PCR bias. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.01934 (2017). - PubMed
  77. Laursen, M. F. et al. Administration of two probiotic strains during early childhood does not affect the endogenous gut microbiota composition despite probiotic proliferation. BMC Microbiol. 17, 175 (2017). - PubMed
  78. Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013). - PubMed
  79. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010). - PubMed
  80. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007). - PubMed
  81. DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006). - PubMed
  82. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990). - PubMed
  83. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016). - PubMed
  84. Frese, S. A. et al. Persistence of supplemented Bifidobacterium longum subsp. infantis EVC001 in breastfed infants. Msphere https://doi.org/10.1128/mSphere.00501-17 (2017). - PubMed
  85. Lawley, B. et al. Differentiation of Bifidobacterium longum subspecies longum and infantis by quantitative PCR using functional gene targets. PeerJ 5, e3375 (2017). - PubMed
  86. Sprenger, N., Lee, L. Y., De Castro, C. A., Steenhout, P. & Thakkar, S. K. Longitudinal change of selected human milk oligosaccharides and association to infants’ growth, an observatory, single center, longitudinal cohort study. PLoS ONE 12, e0171814 (2017). - PubMed
  87. Xu, G. et al. Absolute quantitation of human milk oligosaccharides reveals phenotypic variations during lactation. J. Nutr. 147, 117–124 (2017). - PubMed
  88. Nayfach, S., Shi, Z. J., Seshadri, R., Pollard, K. S. & Kyrpides, N. C. New insights from uncultivated genomes of the global human gut microbiome. Nature 568, 505–510 (2019). - PubMed
  89. Sakurama, H. et al. Lacto-N-biosidase encoded by a novel gene of Bifidobacterium longum subspecies longum shows unique substrate specificity and requires a designated chaperone for its active expression. J. Biol. Chem. 288, 25194–25206 (2013). - PubMed
  90. Kanesaki, Y. et al. Complete genome sequence of Bifidobacterium longum 105-A, a strain with high transformation efficiency. Genome Announc. 2, e01311-14 (2014). - PubMed
  91. Sakanaka, M. et al. Functional analysis of bifidobacterial promoters in Bifidobacterium longum and Escherichia coli using the α-galactosidase gene as a reporter. J. Biosci. Bioeng. 118, 489–495 (2014). - PubMed
  92. Poolman, B., Nijssen, R. M. J. & Konings, W. N. Dependence of Streptococcus lactis phosphate transport on internal phosphate concentration and internal pH. J. Bacteriol. 169, 5373–5378 (1987). - PubMed
  93. Barri, T., Holmer-Jensen, J., Hermansen, K. & Dragsted, L. O. Metabolic fingerprinting of high-fat plasma samples processed by centrifugation- and filtration-based protein precipitation delineates significant differences in metabolite information coverage. Anal. Chim. Acta 718, 47–57 (2012). - PubMed
  94. Nielsen, L. N. et al. Glyphosate has limited short-term effects on commensal bacterial community composition in the gut environment due to sufficient aromatic amino acid levels. Environ. Pollut. 233, 364–376 (2018). - PubMed
  95. Roager, H. M. et al. Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut. Nat. Microbiol. 1, 16093 (2016). - PubMed
  96. Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006). - PubMed
  97. Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3, 211–221 (2007). - PubMed
  98. Gürdeniz, G., Kristensen, M., Skov, T. & Dragsted, L. O. The effect of LC-MS data preprocessing methods on the selection of plasma biomarkers in fed vs. fasted rats. Metabolites 2, 77–99 (2012). - PubMed
  99. Pluskal, T., Castillo, S., Villar-Briones, A. & Orešič, M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11, 395 (2010). - PubMed
  100. van der Kloet, F. M., Bobeldijk, I., Verheij, E. R. & Jellema, R. H. Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping. J. Proteome Res. 8, 5132–5141 (2009). - PubMed
  101. Smart, K. F., Aggio, R. B. M., Van Houtte, J. R. & Villas-Bôas, S. G. Analytical platform for metabolome analysis of microbial cells using methyl chloroformate derivatization followed by gas chromatography–mass spectrometry. Nat. Protoc. 5, 1709–1729 (2010). - PubMed
  102. Johnsen, L. G., Skou, P. B., Khakimov, B. & Bro, R. Gas chromatography—mass spectrometry data processing made easy. J. Chromatogr. A 1503, 57–64 (2017). - PubMed
  103. Rosenmai, A. K. et al. Are structural analogues to bisphenol a safe alternatives? Toxicol. Sci. 139, 35–47 (2014). - PubMed
  104. Thysen, A. H. et al. Distinct immune phenotypes in infants developing asthma during childhood. Sci. Transl. Med. 12, 258 (2020). - PubMed
  105. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013). - PubMed
  106. Wickhamm, H. ggplot2 Elegant Graphics for Data Analysis (Springer, 2009). - PubMed
  107. Vu, V. ggbiplot: a ggplot2 based biplot R v0.55 (2011). - PubMed
  108. Warnes, G. R. et al. gplots: various R programming tools for plotting data. R package v2.16.0 (2015). - PubMed
  109. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate—a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995). - PubMed
  110. Smith, E. A. & Macfarlane, G. T. Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J. Appl. Bacteriol. 81, 288–302 (1996). - PubMed
  111. Smith, E. A. & Macfarlane, G. T. Formation of phenolic and indolic compounds by anaerobic bacteria in the human large intestine. Microb. Ecol. 33, 180–188 (1997). - PubMed

Publication Types