Display options
Share it on

Elife. 2021 Nov 29;10. doi: 10.7554/eLife.67611.

Effects of arousal and movement on secondary somatosensory and visual thalamus.

eLife

Gordon H Petty, Amanda K Kinnischtzke, Y Kate Hong, Randy M Bruno

Affiliations

  1. Department of Neuroscience, Columbia University, New York, United States.
  2. Kavli Institute for Brain Science, New York, United States.
  3. Zuckerman Mind Brain Behavior Institute, New York, United States.

PMID: 34842139 PMCID: PMC8660016 DOI: 10.7554/eLife.67611

Abstract

Neocortical sensory areas have associated primary and secondary thalamic nuclei. While primary nuclei transmit sensory information to cortex, secondary nuclei remain poorly understood. We recorded juxtasomally from secondary somatosensory (POm) and visual (LP) nuclei of awake mice while tracking whisking and pupil size. POm activity correlated with whisking, but not precise whisker kinematics. This coarse movement modulation persisted after facial paralysis and thus was not due to sensory reafference. This phenomenon also continued during optogenetic silencing of somatosensory and motor cortex and after lesion of superior colliculus, ruling out a motor efference copy mechanism. Whisking and pupil dilation were strongly correlated, possibly reflecting arousal. Indeed LP, which is not part of the whisker system, tracked whisking equally well, further indicating that POm activity does not encode whisker movement per se. The semblance of movement-related activity is likely instead a global effect of arousal on both nuclei. We conclude that secondary thalamus monitors behavioral state, rather than movement, and may exist to alter cortical activity accordingly.

© 2021, Petty et al.

Keywords: LP; POm; arousal; motor; mouse; movement; neuroscience; thalamus

Conflict of interest statement

GP, AK, YH, RB No competing interests declared

References

  1. Philos Trans R Soc Lond B Biol Sci. 2002 Dec 29;357(1428):1695-708 - PubMed
  2. PLoS Biol. 2006 May;4(5):e124 - PubMed
  3. J Neurophysiol. 2016 May 1;115(5):2265-79 - PubMed
  4. J Neurophysiol. 2008 Aug;100(2):681-9 - PubMed
  5. J Neurophysiol. 2015 Mar 1;113(5):1287-301 - PubMed
  6. J Neurosci. 2010 Jun 23;30(25):8650-9 - PubMed
  7. Exp Brain Res. 1987;68(1):73-87 - PubMed
  8. Cell Rep. 2016 Jan 12;14(2):208-15 - PubMed
  9. Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):4054-9 - PubMed
  10. J Comp Neurol. 1998 Feb 9;391(2):180-203 - PubMed
  11. Neuron. 2021 Jul 21;109(14):2308-2325.e10 - PubMed
  12. Nature. 2014 Nov 6;515(7525):116-9 - PubMed
  13. J Neurophysiol. 2010 Mar;103(3):1147-57 - PubMed
  14. Neuropsychologia. 1987;25(1A):97-105 - PubMed
  15. Science. 2013 Jun 28;340(6140):1591-4 - PubMed
  16. Brain. 2002 Feb;125(Pt 2):350-60 - PubMed
  17. J Neurophysiol. 2004 Jun;91(6):2390-9 - PubMed
  18. Nature. 2018 Sep;561(7724):542-546 - PubMed
  19. Eur J Neurosci. 2015 May;41(10):1294-310 - PubMed
  20. Elife. 2021 Nov 29;10: - PubMed
  21. PLoS Comput Biol. 2012;8(7):e1002591 - PubMed
  22. Nat Neurosci. 2016 Feb;19(2):299-307 - PubMed
  23. Science. 2012 Aug 10;337(6095):753-6 - PubMed
  24. Nat Neurosci. 2002 Feb;5(2):99-100 - PubMed
  25. J Neurosci. 2004 Oct 6;24(40):8911-5 - PubMed
  26. J Neurophysiol. 2006 Nov;96(5):2265-73 - PubMed
  27. Nat Commun. 2020 Apr 3;11(1):1693 - PubMed
  28. Nat Neurosci. 2015 Dec;18(12):1789-97 - PubMed
  29. Cereb Cortex. 2010 Oct;20(10):2277-86 - PubMed
  30. Nat Neurosci. 2019 Oct;22(10):1677-1686 - PubMed
  31. PLoS Biol. 2015 Sep 22;13(9):e1002253 - PubMed
  32. J Neurophysiol. 2009 Jul;102(1):181-91 - PubMed
  33. Cereb Cortex. 2010 Oct;20(10):2265-76 - PubMed
  34. Somatosens Mot Res. 2003;20(3-4):233-8 - PubMed
  35. J Comp Neurol. 1992 Apr 22;318(4):462-76 - PubMed
  36. Nat Neurosci. 2016 Apr;19(4):533-41 - PubMed
  37. Nat Commun. 2016 Nov 08;7:13289 - PubMed
  38. Neuron. 2014 Oct 22;84(2):355-62 - PubMed
  39. Nat Rev Neurosci. 2008 Aug;9(8):601-12 - PubMed
  40. J Neurosci. 2005 Nov 23;25(47):10990-1002 - PubMed
  41. J Neurosci. 2010 May 5;30(18):6342-54 - PubMed
  42. Neuron. 2015 May 6;86(3):740-54 - PubMed
  43. Neuron. 2019 Jul 17;103(2):277-291.e4 - PubMed
  44. J Neural Eng. 2017 Aug;14(4):045003 - PubMed
  45. Cell Rep. 2014 Dec 11;9(5):1654-1660 - PubMed
  46. Neuron. 2019 Jan 2;101(1):91-102.e4 - PubMed
  47. Neuron. 2011 Oct 20;72(2):344-56 - PubMed
  48. Eur J Neurosci. 2014 May;39(9):1455-64 - PubMed
  49. J Neurosci. 2003 Aug 13;23(19):7381-4 - PubMed
  50. Cell Rep. 2015 Oct 27;13(4):647-656 - PubMed
  51. Elife. 2019 Feb 11;8: - PubMed
  52. Neuron. 2002 Jan 17;33(2):163-75 - PubMed
  53. Neuroscience. 1995 May;66(2):253-63 - PubMed
  54. Neuron. 2016 Apr 20;90(2):374-87 - PubMed
  55. Nature. 2017 May 11;545(7653):181-186 - PubMed
  56. Science. 1980 Feb 1;207(4430):532-5 - PubMed
  57. Neuron. 2007 Oct 25;56(2):339-55 - PubMed
  58. J Neurophysiol. 1985 Oct;54(4):867-86 - PubMed
  59. Nature. 2008 Aug 14;454(7206):881-5 - PubMed
  60. J Comp Neurol. 2016 Dec 15;524(18):3774-3809 - PubMed
  61. J Neurophysiol. 2004 Sep;92(3):1700-7 - PubMed
  62. Nat Neurosci. 2019 Nov;22(11):1925-1935 - PubMed
  63. Front Neural Circuits. 2014 Jun 24;8:69 - PubMed
  64. J Neurophysiol. 1997 Aug;78(2):1144-9 - PubMed
  65. Nat Neurosci. 2012 Jan 22;15(3):370-2 - PubMed
  66. Neuron. 2011 Mar 24;69(6):1061-8 - PubMed
  67. Neuroscience. 2014 Apr 18;265:9-20 - PubMed
  68. J Comp Neurol. 1991 Dec 8;314(2):201-16 - PubMed

Publication Types

Grant support