Display options
Share it on

Int J Environ Res Public Health. 2021 Dec 03;18(23). doi: 10.3390/ijerph182312774.

Validity of Domain-Specific Sedentary Time Using Accelerometer and Questionnaire with activPAL Criterion.

International journal of environmental research and public health

Rina So, Tomoaki Matsuo

Affiliations

  1. Ergonomics Research Group, National Institute of Occupational Safety and Health, Kawasaki 214-8585, Japan.
  2. Research Center for Overwork-Related Disorders, National Institute of Occupational Safety and Health, Kawasaki 214-8585, Japan.

PMID: 34886498 PMCID: PMC8656956 DOI: 10.3390/ijerph182312774

Abstract

Accelerometers based on the cut-point method are generally the most used in sedentary time (ST) research. However, mixed cut-points are an issue, so an accelerometer based on metabolic equivalents (METs) could be used as an alternative. This study aimed to validate a METs-based accelerometer (HJA-750C, OMRON) and a questionnaire that estimates domain-specific sedentary time measures using activPAL as a criterion value. We also examined whether measurement validity differed according to gender and occupation. We used data from 242 workers in the validation study. Participants wore activPAL on the thigh and OMRON on the waist for seven consecutive days with daily recording logs. The Workers Living Activity-time Questionnaire (WLAQ) was administered once. The domain-specific ST assessed quantities of ST during commuting, working time, non-working time on a workday, and non-workday. Intraclass correlation coefficients (ICC) and Spearman's rho coefficients were then used to conduct analyses. The OMRON accelerometer showed acceptable values (

Keywords: physical activity; sedentary behavior; sitting; validation study; worker

References

  1. BMC Public Health. 2016 Feb 17;16:163 - PubMed
  2. J Occup Environ Med. 2014 Mar;56(3):298-303 - PubMed
  3. J Behav Med. 2019 Apr;42(2):315-329 - PubMed
  4. Prev Chronic Dis. 2012;9:E113 - PubMed
  5. BMC Public Health. 2013 Apr 04;13:296 - PubMed
  6. BMC Public Health. 2014 Dec 10;14:1255 - PubMed
  7. JAMA Intern Med. 2016 May 1;176(5):702-3 - PubMed
  8. PLoS One. 2013 Aug 06;8(8):e70213 - PubMed
  9. Physiol Meas. 2014 Nov;35(11):2319-28 - PubMed
  10. BMC Public Health. 2021 Feb 12;21(1):345 - PubMed
  11. Exerc Sport Sci Rev. 2010 Jul;38(3):105-13 - PubMed
  12. Lancet. 1986 Feb 8;1(8476):307-10 - PubMed
  13. Br J Nutr. 2011 Jun;105(11):1681-91 - PubMed
  14. Med Sci Sports Exerc. 2008 Jan;40(1):181-8 - PubMed
  15. Physiol Meas. 2016 Sep 21;37(10):1669-1685 - PubMed
  16. Med Sci Sports Exerc. 2005 Nov;37(11 Suppl):S512-22 - PubMed
  17. Int J Behav Nutr Phys Act. 2017 Jun 10;14(1):75 - PubMed
  18. Med Sci Sports Exerc. 2016 Aug;48(8):1514-1522 - PubMed
  19. J Phys Act Health. 2013 May;10(4):504-14 - PubMed
  20. Med Sci Sports Exerc. 2011 Mar;43(3):449-56 - PubMed
  21. Int J Sports Med. 2013 Nov;34(11):975-82 - PubMed
  22. Int J Environ Res Public Health. 2020 May 30;17(11): - PubMed
  23. J Phys Act Health. 2010 Nov;7(6):718-23 - PubMed
  24. Am J Epidemiol. 2008 Apr 1;167(7):875-81 - PubMed
  25. Int J Behav Nutr Phys Act. 2015 Jun 30;12:89 - PubMed
  26. Med Sci Sports Exerc. 2017 May;49(5):1022-1028 - PubMed
  27. J Epidemiol. 2021 Oct 5;31(10):530-536 - PubMed
  28. Obes Rev. 2013 Jun;14(6):451-62 - PubMed
  29. Int J Environ Res Public Health. 2019 Aug 28;16(17): - PubMed
  30. Circulation. 2016 Sep 27;134(13):e262-79 - PubMed
  31. Med Sci Sports Exerc. 2015 Oct;47(10):2129-39 - PubMed
  32. J Sci Med Sport. 2011 Sep;14(5):411-6 - PubMed
  33. Int J Behav Nutr Phys Act. 2020 Jun 15;17(1):75 - PubMed
  34. J Epidemiol. 2016 Aug 5;26(8):405-12 - PubMed
  35. PLoS One. 2012;7(4):e34916 - PubMed
  36. Am J Prev Med. 2011 Aug;41(2):216-27 - PubMed
  37. Med Sci Sports Exerc. 2011 Aug;43(8):1561-7 - PubMed
  38. Br J Sports Med. 2014 Feb;48(3):197-201 - PubMed

MeSH terms

Publication Types