Display options
Share it on

Front Plant Sci. 2021 Nov 25;12:741122. doi: 10.3389/fpls.2021.741122. eCollection 2021.

The Genomic Architecture of Competitive Response of .

Frontiers in plant science

Cyril Libourel, Etienne Baron, Juliana Lenglet, Laurent Amsellem, Dominique Roby, Fabrice Roux

Affiliations

  1. Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Université de Toulouse, Castanet-Tolosan, France.
  2. Laboratoire Evolution, Ecologie et Paléontologie, UMR CNRS 8198, Université de Lille, Villeneuve d'Ascq Cedex, France.

PMID: 34899774 PMCID: PMC8656689 DOI: 10.3389/fpls.2021.741122

Abstract

Plants are daily challenged by multiple abiotic and biotic stresses. A major biotic constraint corresponds to competition with other plant species. Although plants simultaneously interact with multiple neighboring species throughout their life cycle, there is still very limited information about the genetics of the competitive response in the context of plurispecific interactions. Using a local mapping population of

Copyright © 2021 Libourel, Baron, Lenglet, Amsellem, Roby and Roux.

Keywords: Arabidopsis thaliana; GWAS; genetic variation; local population; plant-plant interactions; plurispecific interactions

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Nature. 2010 Jun 3;465(7298):627-31 - PubMed
  2. New Phytol. 2014 Jul;203(1):32-43 - PubMed
  3. Trends Plant Sci. 2015 Oct;20(10):604-613 - PubMed
  4. ISME J. 2018 Aug;12(8):2024-2038 - PubMed
  5. J Chem Ecol. 2013 Feb;39(2):213-31 - PubMed
  6. Am Nat. 2006 Jun;167(6):826-36 - PubMed
  7. Glob Chang Biol. 2014 Mar;20(3):835-50 - PubMed
  8. Heredity (Edinb). 2014 Jan;112(1):70-8 - PubMed
  9. Curr Top Dev Biol. 2016;119:111-56 - PubMed
  10. PLoS Genet. 2013;9(9):e1003766 - PubMed
  11. Ecol Lett. 2016 Aug;19(8):825-38 - PubMed
  12. New Phytol. 2017 Feb;213(3):1346-1362 - PubMed
  13. New Phytol. 2017 Jan;213(2):838-851 - PubMed
  14. J Exp Bot. 2019 Feb 20;70(4):1141-1151 - PubMed
  15. Front Plant Sci. 2017 May 23;8:763 - PubMed
  16. New Phytol. 2021 Jan;229(2):712-734 - PubMed
  17. PLoS Genet. 2010 May 06;6(5):e1000940 - PubMed
  18. Ecology. 2017 Sep;98(9):2261-2266 - PubMed
  19. Mol Plant Pathol. 2020 Nov;21(11):1405-1420 - PubMed
  20. Int J Mol Sci. 2021 May 06;22(9): - PubMed
  21. PLoS One. 2012;7(3):e32069 - PubMed
  22. Heredity (Edinb). 2019 Oct;123(4):517-531 - PubMed
  23. Evolution. 2000 Dec;54(6):1982-94 - PubMed
  24. Sci Rep. 2020 Dec 10;10(1):21632 - PubMed
  25. New Phytol. 2009 Dec;184(4):783-93 - PubMed
  26. Science. 2011 Oct 7;334(6052):83-6 - PubMed
  27. AoB Plants. 2015 Sep 25;7: - PubMed
  28. Nat Ecol Evol. 2017 Oct;1(10):1551-1561 - PubMed
  29. Trends Ecol Evol. 2010 Jun;25(6):325-31 - PubMed
  30. Nature. 2017 May 31;546(7656):56-64 - PubMed
  31. Nat Genet. 2012 Jun 17;44(7):821-4 - PubMed
  32. Am J Bot. 2005 Jun;92(6):960-71 - PubMed
  33. Mol Plant. 2016 Mar 7;9(3):338-355 - PubMed
  34. Chromosoma. 2016 Jun;125(3):497-521 - PubMed
  35. Mol Biol Evol. 2019 Jul 1;36(7):1442-1456 - PubMed
  36. PLoS Genet. 2010 Feb 12;6(2):e1000843 - PubMed
  37. Nat Genet. 2012 Jan 08;44(2):212-6 - PubMed
  38. Heredity (Edinb). 2009 Feb;102(2):163-73 - PubMed
  39. Plant J. 2018 Feb;93(4):747-770 - PubMed
  40. Bioinformatics. 2017 Sep 15;33(18):2938-2940 - PubMed
  41. Mol Plant Microbe Interact. 2020 Feb;33(2):200-211 - PubMed
  42. Mol Ecol. 2017 Jul;26(14):3700-3714 - PubMed
  43. Mol Ecol. 2013 Aug;22(16):4222-4240 - PubMed

Publication Types