Display options
Share it on

PeerJ. 2021 Nov 26;9:e12357. doi: 10.7717/peerj.12357. eCollection 2021.

Monitoring newt communities in urban area using eDNA metabarcoding.

PeerJ

Léo Charvoz, Laure Apothéloz-Perret-Gentil, Emanuela Reo, Jacques Thiébaud, Jan Pawlowski

Affiliations

  1. Department of Genetics and Evolution, University of Geneva, Geneva, Geneva, Switzerland.
  2. ID-Gene ecodiagnostics, Campus Biotech Innovation Park, Geneva, Switzerland.
  3. KARCH-GE (Swiss Coordination Center for the Protection of Amphibians and Reptiles)-Geneva Regional Branch, Switzerland, Geneva, Geneva, Switzerland.
  4. Polish Academy of Sciences, Institute of Oceanology, Sopot, Pomerania, Poland.

PMID: 34900410 PMCID: PMC8628619 DOI: 10.7717/peerj.12357

Abstract

Newts are amphibians commonly present in small ponds or garden pools in urban areas. They are protected in many countries and their presence is monitored through visual observation and/or trapping. However, newts are not easy to spot as they are small, elusive and often hidden at the bottom of water bodies. In recent years, environmental DNA (eDNA) has become a popular tool for detecting newts, with a focus on individual species using qPCR assays. Here, we assess the effectiveness of eDNA metabarcoding compared to conventional visual surveys of newt diversity in 45 ponds within urban areas of Geneva canton, Switzerland. We designed newt-specific mitochondrial 16S rRNA primers, which assign the majority of amplicons to newts, and were able to detect four species known to be present in the region, including the invasive subspecies

©2021 Charvoz et al.

Keywords: 16S; Illumina; Invasive; Metabarcoding; Monitoring; Newt; Water; eDNA

Conflict of interest statement

Laure Apothéloz-Perret-Gentil and Jan Pawlowski are employed by ID-Gene ecodiagnostics, Switzerland.

References

  1. J Exp Biol. 2010 Mar 15;213(6):921-33 - PubMed
  2. BMC Res Notes. 2017 Jul 26;10(1):327 - PubMed
  3. ISME J. 2017 Dec;11(12):2639-2643 - PubMed
  4. Mol Biol Evol. 1987 Jul;4(4):406-25 - PubMed
  5. Mol Ecol Resour. 2018 Nov;18(6):1415-1426 - PubMed
  6. Sci Rep. 2018 Apr 3;8(1):5452 - PubMed
  7. Mol Ecol Resour. 2016 Nov;16(6):1401-1414 - PubMed
  8. Trends Ecol Evol. 2005 Mar;20(3):110 - PubMed
  9. Mol Biol Evol. 2010 Feb;27(2):221-4 - PubMed
  10. ISME J. 2018 Jan;12(1):253-266 - PubMed
  11. PeerJ. 2019 Feb 19;7:e5999 - PubMed
  12. Ecol Indic. 2019;104:378-389 - PubMed
  13. BMC Bioinformatics. 2019 Feb 19;20(1):88 - PubMed
  14. Ecol Evol. 2014 Nov;4(21):4023-32 - PubMed
  15. Nucleic Acids Res. 2013 Jan;41(Database issue):D36-42 - PubMed
  16. Vet Res. 2015 Nov 25;46:137 - PubMed
  17. Mol Ecol Resour. 2018 May;18(3):502-510 - PubMed
  18. Ecol Evol. 2018 May 29;8(12):6330-6341 - PubMed
  19. Environ Health Perspect. 1999 Oct;107(10):799-803 - PubMed
  20. Mol Ecol. 2017 Nov;26(21):5872-5895 - PubMed
  21. PLoS One. 2018 Jan 19;13(1):e0191737 - PubMed
  22. Biol Lett. 2008 Aug 23;4(4):423-5 - PubMed
  23. Sci Rep. 2017 Apr 10;7:46294 - PubMed
  24. PLoS One. 2017 Nov 15;12(11):e0188126 - PubMed
  25. Mol Ecol. 2021 Jul;30(13):3057-3067 - PubMed
  26. Environ Microbiol. 2020 Apr;22(4):1280-1293 - PubMed
  27. Sci Total Environ. 2018 Aug 15;633:695-703 - PubMed
  28. J Mol Biol. 1990 Oct 5;215(3):403-10 - PubMed
  29. Nucleic Acids Res. 2015 Mar 11;43(5):2513-24 - PubMed

Publication Types