Display options
Share it on

Mol Cell. 2021 Oct 07;81(19):4041-4058.e15. doi: 10.1016/j.molcel.2021.09.016.

NR4A1 regulates expression of immediate early genes, suppressing replication stress in cancer.

Molecular cell

Hongshan Guo, Gabriel Golczer, Ben S Wittner, Adam Langenbucher, Marcus Zachariah, Taronish D Dubash, Xin Hong, Valentine Comaills, Risa Burr, Richard Y Ebright, Elad Horwitz, Joanna A Vuille, Soroush Hajizadeh, Devon F Wiley, Brittany A Reeves, Jia-Min Zhang, Kira L Niederhoffer, Chenyue Lu, Benjamin Wesley, Uyen Ho, Linda T Nieman, Mehmet Toner, Shobha Vasudevan, Lee Zou, Raul Mostoslavsky, Shyamala Maheswaran, Michael S Lawrence, Daniel A Haber

Affiliations

  1. Massachusetts General Hospital Cancer Center, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
  2. Massachusetts General Hospital Cancer Center, Boston, MA, USA.
  3. Center for Bioengineering in Medicine and Shriners Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
  4. Massachusetts General Hospital Cancer Center, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
  5. Massachusetts General Hospital Cancer Center, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
  6. Massachusetts General Hospital Cancer Center, Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. Electronic address: [email protected].
  7. Massachusetts General Hospital Cancer Center, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. Electronic address: [email protected].
  8. Massachusetts General Hospital Cancer Center, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. Electronic address: [email protected].

PMID: 34624217 PMCID: PMC8549465 DOI: 10.1016/j.molcel.2021.09.016

Abstract

Deregulation of oncogenic signals in cancer triggers replication stress. Immediate early genes (IEGs) are rapidly and transiently expressed following stressful signals, contributing to an integrated response. Here, we find that the orphan nuclear receptor NR4A1 localizes across the gene body and 3' UTR of IEGs, where it inhibits transcriptional elongation by RNA Pol II, generating R-loops and accessible chromatin domains. Acute replication stress causes immediate dissociation of NR4A1 and a burst of transcriptionally poised IEG expression. Ectopic expression of NR4A1 enhances tumorigenesis by breast cancer cells, while its deletion leads to massive chromosomal instability and proliferative failure, driven by deregulated expression of its IEG target, FOS. Approximately half of breast and other primary cancers exhibit accessible chromatin domains at IEG gene bodies, consistent with this stress-regulatory pathway. Cancers that have retained this mechanism in adapting to oncogenic replication stress may be dependent on NR4A1 for their proliferation.

Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.

Keywords: CTCs; IEGs; R-loops; circulating tumor cells; genomic instability; immediate early genes; orphan nuclear receptor; replication stress; transcriptional regulation

Conflict of interest statement

Declaration of interests Massachusetts General Hospital (MGH) has applied for patents regarding the CTC-iChip technology and CTC detection signatures. M.T., D.A.H., and S.M. are cofounders and have eq

References

  1. Nature. 2005 Apr 14;434(7035):864-70 - PubMed
  2. BMC Bioinformatics. 2013 Jan 16;14:7 - PubMed
  3. Cell. 2017 Feb 9;168(4):692-706 - PubMed
  4. Bioinformatics. 2015 Jun 15;31(12):2032-4 - PubMed
  5. Bioinformatics. 2015 Jan 15;31(2):166-9 - PubMed
  6. Mol Cell. 2012 Mar 30;45(6):814-25 - PubMed
  7. Bioinformatics. 2009 Jul 15;25(14):1754-60 - PubMed
  8. Cancer Res. 2019 Apr 15;79(8):1730-1739 - PubMed
  9. Nat Genet. 2019 Oct;51(10):1494-1505 - PubMed
  10. Methods Mol Biol. 2017;1468:1-9 - PubMed
  11. Nature. 2019 Mar;567(7749):530-534 - PubMed
  12. J Biol Chem. 2017 Sep 15;292(37):15216-15224 - PubMed
  13. Nature. 2016 Sep 1;537(7618):102-106 - PubMed
  14. Adv Biol Regul. 2016 Sep;62:37-49 - PubMed
  15. Cell. 2011 Mar 4;144(5):646-74 - PubMed
  16. Nat Protoc. 2016 Aug;11(8):1455-76 - PubMed
  17. Trends Neurosci. 1995 Feb;18(2):66-7 - PubMed
  18. Cell. 2010 Apr 30;141(3):432-45 - PubMed
  19. Cell. 1997 Mar 7;88(5):593-602 - PubMed
  20. Mol Cell. 2019 Oct 3;76(1):57-69.e9 - PubMed
  21. Nucleic Acids Res. 2011 Apr;39(7):2503-18 - PubMed
  22. Nucl Recept Signal. 2006;4:e002 - PubMed
  23. FASEB J. 2011 Jan;25(1):192-205 - PubMed
  24. Steroids. 1999 May;64(5):310-9 - PubMed
  25. Nature. 2004 Nov 18;432(7015):316-23 - PubMed
  26. Genes Dev. 2014 Jul 1;28(13):1384-96 - PubMed
  27. Genome Biol. 2014;15(12):550 - PubMed
  28. EMBO Rep. 2012 Jun 01;13(6):515-27 - PubMed
  29. Nat Commun. 2014 Mar 03;5:3388 - PubMed
  30. Cell Syst. 2018 Jul 25;7(1):17-27.e3 - PubMed
  31. Endocr Relat Cancer. 2015 Oct;22(5):831-40 - PubMed
  32. Nature. 2012 Oct 4;490(7418):61-70 - PubMed
  33. N Engl J Med. 2006 Sep 7;355(10):1037-46 - PubMed
  34. Nucleic Acids Res. 2015 Apr 20;43(7):e47 - PubMed
  35. Nat Rev Cancer. 2015 May;15(5):276-89 - PubMed
  36. Cell. 2002 Apr;109 Suppl:S57-66 - PubMed
  37. Sci Rep. 2018 Jun 15;8(1):9227 - PubMed
  38. BMC Genomics. 2018 Mar 1;19(1):169 - PubMed
  39. Nat Med. 2006 Sep;12(9):1048-55 - PubMed
  40. Cell. 2009 Mar 6;136(5):823-37 - PubMed
  41. Nat Protoc. 2019 Jun;14(6):1734-1755 - PubMed
  42. Mol Cell. 2012 Apr 27;46(2):115-24 - PubMed
  43. Nat Rev Drug Discov. 2015 Jun;14(6):405-23 - PubMed
  44. Nat Rev Mol Cell Biol. 2018 Nov;19(11):731-745 - PubMed
  45. Nat Commun. 2017 May 05;8:15081 - PubMed
  46. Cell Div. 2009 Jul 03;4:13 - PubMed
  47. Cell Rep. 2016 Dec 6;17(10):2632-2647 - PubMed
  48. Cancer Discov. 2018 May;8(5):537-555 - PubMed
  49. Nat Rev Genet. 2012 Oct;13(10):720-31 - PubMed
  50. Genome Biol. 2008;9(9):R137 - PubMed
  51. Bioinformatics. 2015 Jul 15;31(14):2382-3 - PubMed
  52. Oncogene. 2012 Jul 5;31(27):3265-76 - PubMed
  53. Nature. 2019 Mar;567(7749):525-529 - PubMed
  54. J Biol Chem. 2016 Feb 26;291(9):4386-98 - PubMed
  55. Science. 2014 Jul 11;345(6193):216-20 - PubMed
  56. Science. 2018 Oct 26;362(6413): - PubMed
  57. Nucleic Acids Res. 2009 Jan;37(1):1-13 - PubMed
  58. Oncogene. 2001 Apr 30;20(19):2390-400 - PubMed
  59. Nat Commun. 2018 May 23;9(1):2028 - PubMed
  60. Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5223-5232 - PubMed
  61. Nucleic Acids Res. 2014 Jul;42(Web Server issue):W187-91 - PubMed
  62. Nat Rev Mol Cell Biol. 2018 Jul;19(7):464-478 - PubMed
  63. Cancer Cell. 2018 Sep 10;34(3):466-482.e6 - PubMed
  64. Genome Biol. 2013 Apr 25;14(4):R36 - PubMed
  65. J Biol Chem. 2002 Oct 18;277(42):40156-62 - PubMed
  66. Cell Stress. 2019 Jan 21;3(2):38-46 - PubMed
  67. Transcription. 2011 May;2(3):103-108 - PubMed
  68. Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):3690-4 - PubMed
  69. Annu Rev Pathol. 2015;10:425-48 - PubMed
  70. Nat Methods. 2017 Oct;14(10):959-962 - PubMed
  71. Cold Spring Harb Perspect Biol. 2016 Oct 3;8(10): - PubMed
  72. Proc Natl Acad Sci U S A. 2016 Jul 26;113(30):E4276-85 - PubMed
  73. Mol Cancer Res. 2021 Feb;19(2):180-191 - PubMed
  74. Cell. 2007 Sep 21;130(6):986-8 - PubMed
  75. Bioinformatics. 2010 Mar 15;26(6):841-2 - PubMed
  76. Cancer Res. 2010 Sep 1;70(17):6824-36 - PubMed
  77. Cell Signal. 2004 Oct;16(10):1113-21 - PubMed
  78. Biochem J. 2015 Apr 1;467(1):77-90 - PubMed
  79. Sci Transl Med. 2013 Apr 3;5(179):179ra47 - PubMed
  80. Nature. 2005 Apr 14;434(7035):907-13 - PubMed
  81. Genome Biol. 2016 Jun 03;17(1):120 - PubMed

Publication Types

Grant support