Display options
Share it on

Commun Biol. 2021 Dec 14;4(1):1395. doi: 10.1038/s42003-021-02931-3.

Single cell analysis of spondyloarthritis regulatory T cells identifies distinct synovial gene expression patterns and clonal fates.

Communications biology

Davide Simone, Frank Penkava, Anna Ridley, Stephen Sansom, M Hussein Al-Mossawi, Paul Bowness

Affiliations

  1. Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK. [email protected].
  2. Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK. [email protected].
  3. Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
  4. Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
  5. Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK. [email protected].

PMID: 34907325 DOI: 10.1038/s42003-021-02931-3

Abstract

Regulatory T cells (Tregs) play an important role in controlling inflammation and limiting autoimmunity, but their phenotypes at inflammatory sites in human disease are poorly understood. We here analyze the single-cell transcriptome of >16,000 Tregs obtained from peripheral blood and synovial fluid of two patients with HLA-B27+ ankylosing spondylitis and three patients with psoriatic arthritis, closely related forms of inflammatory spondyloarthritis. We identify multiple Treg clusters with distinct transcriptomic profiles, including, among others, a regulatory CD8

© 2021. The Author(s).

References

  1. Sakaguchi, S. et al. Regulatory T cells and human disease. Annu. Rev. Immunol. https://doi.org/10.1146/annurev-immunol-042718-041717 (2020). - PubMed
  2. Panduro, M., Benoist, C. & Mathis, D. Tissue Tregs. Annu. Rev. Immunol. 34, 609–633 (2016). - PubMed
  3. DiSpirito, J. R. et al. Molecular diversification of regulatory T cells in nonlymphoid tissues. Sci. Immunol. 3, eaat5861 (2018). - PubMed
  4. Simone, D., Al Mossawi, M. H. & Bowness, P. Progress in our understanding of the pathogenesis of ankylosing spondylitis. Rheumatology (Oxf.) 57, vi4–vi9 (2018). - PubMed
  5. Smith, J. A. & Colbert, R. A. Review: the interleukin-23/interleukin-17 axis in spondyloarthritis pathogenesis: Th17 and beyond: IL-23/IL-17 axis in SpA. Arthritis Rheumatol. 66, 231–241 (2014). - PubMed
  6. Lathrop, S. K. et al. Peripheral education of the immune system by colonic commensal microbiota. Nature 478, 250–254 (2011). - PubMed
  7. Cebula, A. et al. Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota. Nature 497, 258–262 (2013). - PubMed
  8. Romagnoli, P., Hudrisier, D. & van Meerwijk, J. P. M. Preferential recognition of self antigens despite normal thymic deletion of CD4(+)CD25(+) regulatory T cells. J. Immunol. 168, 1644–1648 (2002). - PubMed
  9. Zemmour, D. et al. Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nat. Immunol. 19, 291–301 (2018). - PubMed
  10. Yu, Y. et al. Recent advances in CD8+ regulatory T cell research. Oncol. Lett. 15, 8187–8194 (2018). - PubMed
  11. Woo, S.-R. et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T cell function to promote tumoral immune escape. Cancer Res. 72, 917–927 (2012). - PubMed
  12. Fergusson, J. R. et al. CD161 defines a transcriptional and functional phenotype across distinct human T cell lineages. Cell Rep. 9, 1075–1088 (2014). - PubMed
  13. International Genetics of Ankylosing Spondylitis Consortium (IGAS) et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat. Genet. 45, 730–738 (2013). - PubMed
  14. Ohnmacht, C. et al. The microbiota regulates type 2 immunity through ROR t+ T cells. Science 349, 989–993 (2015). - PubMed
  15. Penkava, F. et al. Single-cell sequencing reveals clonal expansions of pro-inflammatory synovial CD8 T cells expressing tissue-homing receptors in psoriatic arthritis. Nat. Commun. 11, 4767 (2020). - PubMed
  16. Bromley, S. K., Thomas, S. Y. & Luster, A. D. Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nat. Immunol. 6, 895–901 (2005). - PubMed
  17. Yamazaki, T. et al. CCR6 regulates the migration of inflammatory and regulatory T cells. J. Immunol. 181, 8391–8401 (2008). - PubMed
  18. Sefik, E. et al. Mucosal immunology. Individual intestinal symbionts induce a distinct population of ROR - PubMed
  19. James, K. R. et al. Distinct microbial and immune niches of the human colon. Nat. Immunol. 21, 343–353 (2020). - PubMed
  20. Gracey, E. et al. Revisiting the gut–joint axis: links between gut inflammation and spondyloarthritis. Nat. Rev. Rheumatol. 16, 415–433 (2020). - PubMed
  21. Chaudhry, A. et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326, 986–991 (2009). - PubMed
  22. Thaker, Y. R., Andrews, L. P., Workman, C. J., Vignali, D. A. A. & Sharpe, A. H. Treg-specific LAG3 deletion reveals a key role for LAG3 in regulatory T cells to inhibit CNS autoimmunity. J. Immunol. 200, 101.7–101.7 (2018). - PubMed
  23. Xu, M. et al. c-MAF-dependent regulatory T cells mediate immunological tolerance to a gut pathobiont. Nature https://doi.org/10.1038/nature25500 (2018). - PubMed
  24. Al-Mossawi, M. H. et al. Unique transcriptome signatures and GM-CSF expression in lymphocytes from patients with spondyloarthritis. Nat. Commun. 8, 1510 (2017). - PubMed
  25. Pesenacker, A. M. et al. CD161 defines the subset of FoxP3+ T cells capable of producing proinflammatory cytokines. Blood 121, 2647–2658 (2013). - PubMed
  26. Duurland, C. L., Brown, C. C., O’Shaughnessy, R. F. L. & Wedderburn, L. R. CD161+ Tconv and CD161+ Treg share a transcriptional and functional phenotype despite limited overlap in TCRβ repertoire. Front. Immunol. 8, 103 (2017). - PubMed
  27. Povoleri, G. A. M. et al. Human retinoic acid–regulated CD161 + regulatory T cells support wound repair in intestinal mucosa. Nat. Immunol. 1, https://doi.org/10.1038/s41590-018-0230-z (2018). - PubMed
  28. Billerbeck, E. & Thimme, R. CD8+ regulatory T cells in persistent human viral infections. Hum. Immunol. 69, 771–775 (2008). - PubMed
  29. Joosten, S. A. et al. Identification of a human CD8+ regulatory T cell subset that mediates suppression through the chemokine CC chemokine ligand 4. PNAS 104, 8029–8034 (2007). - PubMed
  30. Patterson, S. J. et al. T regulatory cell chemokine production mediates pathogenic T cell attraction and suppression. J. Clin. Invest. 126, 1039–1051 (2016). - PubMed
  31. Grossman, W. J. et al. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21, 589–601 (2004). - PubMed
  32. Gracey, E. et al. Altered cytotoxicity profile of CD8+ T cells in ankylosing spondylitis. Arthritis Rheumatol. 72, 428–434 (2020). - PubMed
  33. Hewitson, J. P. et al. Malat1 suppresses immunity to infection through promoting expression of Maf and IL-10 in Th cells. J. Immunol. 204, 2949–2960 (2020). - PubMed
  34. Morris, D. L., Johnson, S., Bleck, C. K. E., Lee, D.-Y. & Tjandra, N. Humanin selectively prevents the activation of pro-apoptotic protein BID by sequestering it into fibers. J. Biol. Chem. 295, 18226–18238 (2020). - PubMed
  35. Kusakari, S., Nawa, M., Sudo, K. & Matsuoka, M. Calmodulin-like skin protein protects against spatial learning impairment in a mouse model of Alzheimer disease. J. Neurochem. 144, 218–233 (2018). - PubMed
  36. Perretti, M. & D’Acquisto, F. Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat. Rev. Immunol. 9, 62–70 (2009). - PubMed
  37. Vasanthakumar, A. et al. The TNF receptor superfamily-NF-κB axis is critical to maintain effector regulatory T cells in lymphoid and non-lymphoid tissues. Cell Rep. 20, 2906–2920 (2017). - PubMed
  38. Tseng, W.-Y. et al. TNF receptor 2 signaling prevents DNA methylation at the Foxp3 promoter and prevents pathogenic conversion of regulatory T cells. PNAS 116, 21666–21672 (2019). - PubMed
  39. Miragaia, R. J. et al. Single-cell transcriptomics of regulatory T cells reveals trajectories of tissue adaptation. Immunity 50, 493–504.e7 (2019). - PubMed
  40. Lönnberg, T. et al. Single-cell RNA-seq and computational analysis using temporal mixture modeling resolves TH1/TFH fate bifurcation in malaria. Sci. Immunol. 2, eaal2192 (2017). - PubMed
  41. Plitas, G. et al. Regulatory T cells exhibit distinct features in human breast cancer. Immunity 45, 1122–1134 (2016). - PubMed
  42. Piccio, L. et al. Adhesion of human T cells to antigen-presenting cells through SIRPβ2-CD47 interaction costimulates T-cell proliferation. Blood 105, 2421–2427 (2005). - PubMed
  43. Mercer, F., Kozhaya, L. & Unutmaz, D. Expression and function of TNF and IL-1 receptors on human regulatory T cells. PLoS ONE 5, e8639 (2010). - PubMed
  44. Barsheshet, Y. et al. CCR8+FOXp3+ Treg cells as master drivers of immune regulation. Proc. Natl Acad. Sci. USA 114, 6086–6091 (2017). - PubMed
  45. De Simone, M. et al. Transcriptional landscape of human tissue lymphocytes unveils uniqueness of tumor-infiltrating T regulatory cells. Immunity 45, 1135–1147 (2016). - PubMed
  46. Magnuson, A. M. et al. Identification and validation of a tumor-infiltrating Treg transcriptional signature conserved across species and tumor types. PNAS 115, E10672–E10681 (2018). - PubMed
  47. Bacher, P. et al. Regulatory T cell specificity directs tolerance versus allergy against aeroantigens in humans. Cell 167, 1067–1078.e16 (2016). - PubMed
  48. Triebel, F. et al. LAG-3, a novel lymphocyte activation gene closely related to CD4. J. Exp. Med. 171, 1393–1405 (1990). - PubMed
  49. Demeure, C. E., Wolfers, J., Martin-Garcia, N., Gaulard, P. & Triebel, F. T Lymphocytes infiltrating various tumour types express the MHC class II ligand lymphocyte activation gene-3 (LAG-3): role of LAG-3/MHC class II interactions in cell-cell contacts. Eur. J. Cancer 37, 1709–1718 (2001). - PubMed
  50. Andrews, L. P., Marciscano, A. E., Drake, C. G. & Vignali, D. A. A. LAG3 (CD223) as a cancer immunotherapy target. Immunol. Rev. 276, 80–96 (2017). - PubMed
  51. Huang, C.-T. et al. Role of LAG-3 in regulatory T cells. Immunity 21, 503–513 (2004). - PubMed
  52. Andreae, S., Piras, F., Burdin, N. & Triebel, F. Maturation and activation of dendritic cells induced by lymphocyte activation gene-3 (CD223). J. Immunol. 168, 3874–3880 (2002). - PubMed
  53. Liang, B. et al. Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J. Immunol. 180, 5916–5926 (2008). - PubMed
  54. Bauché, D. et al. LAG3+ regulatory T cells restrain interleukin-23-producing CX3CR1+ gut-resident macrophages during group 3 innate lymphoid cell-driven colitis. Immunity 49, 342–352.e5 (2018). - PubMed
  55. Ciccia, F. et al. Proinflammatory CX3CR1+CD59+ tumor necrosis factor-like molecule 1A+ interleukin-23+ monocytes are expanded in patients with ankylosing spondylitis and modulate innate lymphoid cell 3 immune functions. Arthritis Rheumatol. 70, 2003–2013 (2018). - PubMed
  56. Do, J.-S. et al. An IL-27/Lag3 axis enhances Foxp3 - PubMed
  57. Pot, C. et al. Cutting edge: IL-27 induces the transcription factor c-Maf, cytokine IL-21, and the costimulatory receptor ICOS that coordinately act together to promote differentiation of IL-10-producing Tr1 cells. J. Immunol. 183, 797–801 (2009). - PubMed
  58. Firestein, G. S. & Zvaifler, N. J. Peripheral blood and synovial fluid monocyte activation in inflammatory arthritis. I. A cytofluorographic study of monocyte differentiation antigens and class II antigens and their regulation by gamma-interferon. Arthritis Rheum. 30, 857–863 (1987). - PubMed
  59. Knight, S. C. et al. Class II antigens on dendritic cells from the synovial fluids of patients with inflammatory arthritis. Clin. Exp. Immunol. 78, 19–25 (1989). - PubMed
  60. Tsark, E. C. et al. Differential MHC class II-mediated presentation of rheumatoid arthritis autoantigens by human dendritic cells and macrophages. J. Immunol. 169, 6625–6633 (2002). - PubMed
  61. Chaput, N. et al. Identification of CD8+CD25+Foxp3+ suppressive T cells in colorectal cancer tissue. Gut 58, 520–529 (2009). - PubMed
  62. Saligrama, N. et al. Opposing T cell responses in experimental autoimmune encephalomyelitis. Nature 572, 481–487 (2019). - PubMed
  63. Joeris, T. et al. Intestinal cDC1 drive cross-tolerance to epithelial-derived antigen via induction of FoxP3+CD8+ Tregs. Sci. Immunol. 6, eabd3774 (2021). - PubMed
  64. Taylor, W. et al. Classification criteria for psoriatic arthritis: Development of new criteria from a large international study. Arthritis Rheum. 54, 2665–2673 (2006). - PubMed
  65. Rudwaleit, M. et al. The assessment of SpondyloArthritis International Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. Ann. Rheum. Dis. 70, 25–31 (2011). - PubMed
  66. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019). - PubMed
  67. Fabregat, A. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 46, D649–D655 (2018). - PubMed

Publication Types