Display options
Share it on

Chem Biodivers. 2021 Nov 23;e2100712. doi: 10.1002/cbdv.202100712. Epub 2021 Nov 23.

Homology Modeling and Molecular Dynamics Simulations of Trypanosoma cruzi Phosphodiesterase b1.

Chemistry & biodiversity

Manuel A Llanos, Lucas N Alberca, Salomé C Vilchez Larrea, Alejandra C Schoijet, Guillermo D Alonso, Carolina L Bellera, Luciana Gavenet, Alan Talevi

Affiliations

  1. Laboratory of Bioactive Research and Development (LIDeB), Faculty of Exact Sciences, University of La Plata - 47 and 115, La Plata, Buenos Aires, Argentina.
  2. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina.
  3. National Scientific and Technical Research Council (CONICET) - CCT, La Plata, Argentina.

PMID: 34813143 DOI: 10.1002/cbdv.202100712

Abstract

Cyclic nucleotide phosphodiesterases have been implicated in the proliferation, differentiation and osmotic regulation of trypanosomatids; in some trypanosomatid species, they have been validated as molecular targets for the development of new therapeutic agents. Because the experimental structure of Trypanosoma cruzi PDEb1 (TcrPDEb1) has not been solved so far, an homology model of the target was created using the structure of Trypanosoma brucei PDEb1 (TbrPDEb1) as a template. The model was refined by extensive enhanced sampling molecular dynamics simulations, and representative snapshots were extracted from the trajectory by combined clustering analysis. This structural ensemble was used to develop a structure-based docking model of the target. The docking accuracy of the model was validated by redocking and cross-docking experiments using all available crystal structures of TbrPDEb1, whereas the scoring accuracy was validated through a retrospective screen, using a carefully curated dataset of compounds assayed against TbrPDEb1 and/or TcrPDEb1. Considering the results from in silico validations, the model may be applied in prospective virtual screening campaigns to identify novel hits, as well as to guide the rational design of potent and selective inhibitors targeting this enzyme.

© 2021 Wiley-VHCA AG, Zurich, Switzerland.

Keywords: Chagas disease; Trypanosoma cruzi; homology modeling; molecular docking; molecular dynamics; phosphodiesterase

References

  1. K. C. F. Lidani, F. A. Andrade, L. Bavia, F. S. Damasceno, M. H. Beltrame, I. J. Messias-Reason, T. L. Sandri, ‘Chagas Disease: From Discovery to a Worldwide Health Problem’, Front. Public Health 2019, 7, 166. - PubMed
  2. C. A. Morillo, J. A. Marin-Neto, A. Avezum, S. Sosa-Estani, A. Rassi, F. Rosas, E. Villena, R. Quiroz, R. Bonilla, C. Britto, F. Guhl, E. Velazquez, L. Bonilla, B. Meeks, P. Rao-Melacini, J. Pogue, A. Mattos, J. Lazdins, A. Rassi, S. J. Connolly, S. Yusuf, ‘Randomized Trial of Benznidazole for Chronic Chagas’ Cardiomyopathy’, N. Engl. J. Med. 2015, 373, 1295-1306. - PubMed
  3. M. Vallejo, P. P. Reyes, M. M. Garcia, A. G. G. Garay, ‘Trypanocidal drugs for late-stage, symptomatic Chagas disease (Trypanosoma cruzi infection)’, Cochrane Database Syst. Rev. 2020, DOI 10.1002/14651858.CD004102.pub3. - PubMed
  4. G. D. Alonso, A. C. Schoijet, H. N. Torres, M. M. Flawiá, ‘TcrPDEA1, a cAMP-specific phosphodiesterase with atypical pharmacological properties from Trypanosoma cruzi’, Mol. Biochem. Parasitol. 2007, 152, 72-79. - PubMed
  5. Y. Shakur, H. P. de Koning, H. Ke, J. Kambayashi, T. Seebeck, ‘Therapeutic potential of phosphodiesterase inhibitors in parasitic diseases’, Handb. Exp. Pharmacol. 2011, 487-510. - PubMed
  6. M. Oberholzer, G. Marti, M. Baresic, S. Kunz, A. Hemphill, T. Seebeck, ‘The Trypanosoma brucei cAMP phosphodiesterases TbrPDEB1 and TbrPDEB2: flagellar enzymes that are essential for parasite virulence’, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2007, 21, 720-731. - PubMed
  7. S. King-Keller, M. Li, A. Smith, S. Zheng, G. Kaur, X. Yang, B. Wang, R. Docampo, ‘Chemical validation of phosphodiesterase C as a chemotherapeutic target in Trypanosoma cruzi, the etiological agent of Chagas’ disease’, Antimicrob. Agents Chemother. 2010, 54, 3738-3745. - PubMed
  8. S. Laxman, A. Riechers, M. Sadilek, F. Schwede, J. A. Beavo, ‘Hydrolysis products of cAMP analogs cause transformation of Trypanosoma brucei from slender to stumpy-like forms’, Proc. Natl. Acad. Sci. USA 2006, 103, 19194-19199. - PubMed
  9. A. Johner, S. Kunz, M. Linder, Y. Shakur, T. Seebeck, ‘Cyclic nucleotide specific phosphodiesterases of Leishmania major’, BMC Microbiol. 2006, 6, 25. - PubMed
  10. A. R. Blaazer, A. K. Singh, E. de Heuvel, E. Edink, K. M. Orrling, J. J. N. Veerman, T. van den Bergh, C. Jansen, E. Balasubramaniam, W. J. Mooij, H. Custers, M. Sijm, D. N. A. Tagoe, T. D. Kalejaiye, J. C. Munday, H. Tenor, A. Matheeussen, M. Wijtmans, M. Siderius, C. de Graaf, L. Maes, H. P. de Koning, D. S. Bailey, G. J. Sterk, I. J. P. de Esch, D. G. Brown, R. Leurs, ‘Targeting a Subpocket in Trypanosoma brucei Phosphodiesterase B1 (TbrPDEB1) Enables the Structure-Based Discovery of Selective Inhibitors with Trypanocidal Activity’, J. Med. Chem. 2018, 61, 3870-3888. - PubMed
  11. S. O. Ochiana, N. D. Bland, L. Settimo, R. K. Campbell, M. P. Pollastri, ‘Repurposing Human PDE4 Inhibitors for Neglected Tropical Diseases. Evaluation of Analogs of the Human PDE4 Inhibitor GSK-256066 as Inhibitors of PDEB1 of Trypanosoma brucei’, Chem. Biol. Drug Des. 2015, 85, 549-564. - PubMed
  12. J. Veerman, T. van den Bergh, K. M. Orrling, C. Jansen, P. Cos, L. Maes, E. Chatelain, J.-R. Ioset, E. E. Edink, H. Tenor, T. Seebeck, I. de Esch, R. Leurs, G. J. Sterk, ‘Synthesis and evaluation of analogs of the phenylpyridazinone NPD-001 as potent trypanosomal TbrPDEB1 phosphodiesterase inhibitors and in vitro trypanocidals’, Bioorg. Med. Chem. 2016, 24, 1573-1581. - PubMed
  13. H. Fan, A. E. Mark, ‘Refinement of homology-based protein structures by molecular dynamics simulation techniques’, Protein Sci. 2004, 13, 211-220. - PubMed
  14. A. Raval, S. Piana, M. P. Eastwood, R. O. Dror, D. E. Shaw, ‘Refinement of protein structure homology models via long, all-atom molecular dynamics simulations’, Proteins Struct. Funct. Bioinf. 2012, 80, 2071-2079. - PubMed
  15. L. Heo, M. Feig, ‘Experimental accuracy in protein structure refinement via molecular dynamics simulations’, Proc. Nat. Acad. Sci. 2018, 115, 13276-13281. - PubMed
  16. L. Heo, M. Feig, ‘What makes it difficult to refine protein models further via molecular dynamics simulations?’, Proteins Struct. Funct. Bioinf. 2018, 86, 177-188. - PubMed
  17. Y. Miao, D. A. Goldfeld, E. V. Moo, P. M. Sexton, A. Christopoulos, J. A. McCammon, C. Valant, ‘Accelerated structure-based design of chemically diverse allosteric modulators of a muscarinic G protein-coupled receptor’, Proc. Natl. Acad. Sci. USA 2016, 113, E5675-E5684. - PubMed
  18. A. Acharya, R. Agarwal, M. B. Baker, J. Baudry, D. Bhowmik, S. Boehm, K. G. Byler, S. Y. Chen, L. Coates, C. J. Cooper, O. Demerdash, I. Daidone, J. D. Eblen, S. Ellingson, S. Forli, J. Glaser, J. C. Gumbart, J. Gunnels, O. Hernandez, S. Irle, D. W. Kneller, A. Kovalevsky, J. Larkin, T. J. Lawrence, S. LeGrand, S.-H. Liu, J. C. Mitchell, G. Park, J. M. Parks, A. Pavlova, L. Petridis, D. Poole, L. Pouchard, A. Ramanathan, D. M. Rogers, D. Santos-Martins, A. Scheinberg, A. Sedova, Y. Shen, J. C. Smith, M. D. Smith, C. Soto, A. Tsaris, M. Thavappiragasam, A. F. Tillack, J. V. Vermaas, V. Q. Vuong, J. Yin, S. Yoo, M. Zahran, L. Zanetti-Polzi, ‘Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19’, J. Chem. Inf. Model. 2020, 60, 5832-5852. - PubMed
  19. R. E. Amaro, J. Baudry, J. Chodera, Ö. Demir, J. A. McCammon, Y. Miao, J. C. Smith, ‘Ensemble Docking in Drug Discovery’, Biophys. J. 2018, 114, 2271-2278. - PubMed
  20. W. Evangelista Falcon, S. R. Ellingson, J. C. Smith, J. Baudry, ‘Ensemble Docking in Drug Discovery: How Many Protein Configurations from Molecular Dynamics Simulations are Needed To Reproduce Known Ligand Binding?’, J. Phys. Chem. B 2019, 123, 5189-5195. - PubMed
  21. M. A. Llanos, M. L. Sbaraglini, M. L. Villalba, M. D. Ruiz, C. Carrillo, C. A. Soto, A. Talevi, A. Angeli, S. Parkkila, C. T. Supuran, L. Gavernet, ‘A structure-based approach towards the identification of novel antichagasic compounds: Trypanosoma cruzi carbonic anhydrase inhibitors’, J. Enzyme Inhib. Med. Chem. 2020, 35, 21-30. - PubMed
  22. M. Johnson, I. Zaretskaya, Y. Raytselis, Y. Merezhuk, S. McGinnis, T. L. Madden, ‘NCBI BLAST: a better web interface’, Nucleic Acids Res. 2008, 36, W5-W9. - PubMed
  23. C. Jansen, H. Wang, A. J. Kooistra, C. de Graaf, K. M. Orrling, H. Tenor, T. Seebeck, D. Bailey, I. J. P. de Esch, H. Ke, R. Leurs, ‘Discovery of Novel Trypanosoma brucei Phosphodiesterase B1 Inhibitors by Virtual Screening against the Unliganded TbrPDEB1 Crystal Structure’, J. Med. Chem. 2013, 56, 2087-2096. - PubMed
  24. A. Tramontano, ‘Homology Modeling with Low Sequence Identity’, Methods 1998, 14, 293-300. - PubMed
  25. D. Eramian, N. Eswar, M.-Y. Shen, A. Sali, ‘How well can the accuracy of comparative protein structure models be predicted?’, Protein Sci. Publ. Protein Soc. 2008, 17, 1881-1893. - PubMed
  26. G. Studer, C. Rempfer, A. M. Waterhouse, R. Gumienny, J. Haas, T. Schwede, ‘QMEANDisCo - distance constraints applied on model quality estimation’, Bioinformatics 2020, 36, 1765-1771. - PubMed
  27. D. Hamelberg, J. Mongan, J. A. McCammon, ‘Accelerated molecular dynamics: A promising and efficient simulation method for biomolecules’, J. Chem. Phys. 2004, 120, 11919-11929. - PubMed
  28. Y. Miao, J. A. McCammon, in Annu. Rep. Comput. Chem. (Ed.: D. A. Dixon), Elsevier, 2017, pp. 231-278. - PubMed
  29. J. Wang, P. R. Arantes, A. Bhattarai, R. V. Hsu, S. Pawnikar, Y. M. Huang, G. Palermo, Y. Miao, ‘Gaussian accelerated molecular dynamics: Principles and applications’, WIREs Comput. Mol. Sci. 2021, n/a, e1521. - PubMed
  30. M. B. Peters, Y. Yang, B. Wang, L. Füsti-Molnár, M. N. Weaver, J. Kenneth M. Merz, ‘Structural Survey of Zinc-Containing Proteins and Development of the Zinc AMBER Force Field (ZAFF)’, DOI 10.1021/ct1002626can be found under https://pubs.acs.org/doi/pdf/10.1021/ct1002626, 2010. - PubMed
  31. P. Li, L. F. Song, K. M. Merz, ‘Parameterization of Highly Charged Metal Ions Using the 12-6-4 LJ-Type Nonbonded Model in Explicit Water’, J. Phys. Chem. B 2015, 119, 883-895. - PubMed
  32. Y.-P. Pang, ‘Successful molecular dynamics simulation of two zinc complexes bridged by a hydroxide in phosphotriesterase using the cationic dummy atom method’, Proteins Struct. Funct. Bioinf. 2001, 45, 183-189. - PubMed
  33. P. Li, K. M. Merz, ‘Metal Ion Modeling Using Classical Mechanics’, Chem. Rev. 2017, 117, 1564-1686. - PubMed
  34. J. J. Perez, M. S. Tomas, J. Rubio-Martinez, ‘Assessment of the Sampling Performance of Multiple-Copy Dynamics versus a Unique Trajectory’, J. Chem. Inf. Model. 2016, 56, 1950-1962. - PubMed
  35. G. Pranami, M. H. Lamm, ‘Estimating error in diffusion coefficients derived from molecular dynamics simulations’, J. Chem. Theory Comput. 2015, 11, 4586-4592. - PubMed
  36. M. Ester, H. P. Kriegel, J. Sander, X. Xiaowei, ‘A density-based algorithm for discovering clusters in large spatial databases with noise’ 1996. - PubMed
  37. P. Śledź, A. Caflisch, ‘Protein structure-based drug design: from docking to molecular dynamics’, Curr. Opin. Struct. Biol. 2018, 48, 93-102. - PubMed
  38. S. Vajda, D. Beglov, A. E. Wakefield, M. Egbert, A. Whitty, ‘Cryptic binding sites on proteins: definition, detection, and druggability’, Curr. Opin. Chem. Biol. 2018, 44, 1-8. - PubMed
  39. W. Zheng, ‘Predicting cryptic ligand binding sites based on normal modes guided conformational sampling’, Proteins 2021, 89, 416-426. - PubMed
  40. E. Amata, N. D. Bland, R. K. Campbell, M. P. Pollastri, ‘Evaluation of pyrrolidine and pyrazolone derivatives as inhibitors of trypanosomal phosphodiesterase B1 (TbrPDEB1)’, Tetrahedron Lett. 2015, 56, 2832-2835. - PubMed
  41. M. A. D'Angelo, S. Sanguineti, J. M. Reece, L. Birnbaumer, H. N. Torres, M. M. Flaviá, ‘Identification, characterization and subcellular localization of TcPDE1, a novel cAMP-specific phosphodiesterase from Trypanosoma cruzi’, Biochem. J. 2004, 378, 63-72. - PubMed
  42. R. Díaz-Benjumea, S. Laxman, T. R. Hinds, J. A. Beavo, A. Rascón, ‘Characterization of a novel cAMP-binding, cAMP-specific cyclic nucleotide phosphodiesterase (TcrPDEB1) from Trypanosoma cruzi’, Biochem. J. 2006, 399, 305-314. - PubMed
  43. S. Kunz, T. Kloeckner, L.-O. Essen, T. Seebeck, M. Boshart, ‘TbPDE1, a novel class I phosphodiesterase of Trypanosoma brucei’, Eur. J. Biochem. 2004, 271, 637-647. - PubMed
  44. E. Amata, N. D. Bland, C. T. Hoyt, L. Settimo, R. K. Campbell, M. P. Pollastri, ‘Repurposing human PDE4 inhibitors for neglected tropical diseases: Design, synthesis and evaluation of cilomilast analogs as Trypanosoma brucei PDEB1 inhibitors’, Bioorg. Med. Chem. Lett. 2014, 24, 4084-4089. - PubMed
  45. J. A. Bélgamo, L. N. Alberca, J. L. Pórfido, F. N. C. Romero, S. Rodriguez, A. Talevi, B. Córsico, G. R. Franchini, ‘Application of target repositioning and in silico screening to exploit fatty acid binding proteins (FABPs) from Echinococcus multilocularis as possible drug targets’, J. Comput.-Aided Mol. Des. 2020, 34, 1275-1288. - PubMed
  46. T.-N. Phan, K.-H. Baek, N. Lee, S. Y. Byun, D. Shum, J. H. No, ‘In vitro and in vivo Activity of mTOR Kinase and PI3K Inhibitors Against Leishmania donovani and Trypanosoma brucei’, Molecules 2020, 25, 1980. - PubMed
  47. M. P. Pollastri, R. K. Campbell, ‘Target repurposing for neglected diseases’, Future Med. Chem. 2011, 3, 1307-1315. - PubMed
  48. N. Eswar, B. Webb, M. A. Marti-Renom, M. S. Madhusudhan, D. Eramian, M. Shen, U. Pieper, A. Sali, ‘Comparative Protein Structure Modeling Using Modeller’, Curr. Protoc. Bioinforma. 2006, 5, Unit-5.6. - PubMed
  49. C. W. Hopkins, S. Le Grand, R. C. Walker, A. E. Roitberg, ‘Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning’, J. Chem. Theory Comput. 2015, 11, 1864-1874. - PubMed
  50. D. R. Roe, T. E. Cheatham, ‘PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data’, J. Chem. Theory Comput. 2013, 9, 3084-3095. - PubMed
  51. O. Trott, A. J. Olson, ‘AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading’, J. Comput. Chem. 2010, 31, 455-461. - PubMed
  52. A. Alhossary, S. D. Handoko, Y. Mu, C.-K. Kwoh, ‘Fast, accurate, and reliable molecular docking with QuickVina 2’, Bioinformatics 2015, 31, 2214-2216. - PubMed
  53. E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, ‘UCSF Chimera - a visualization system for exploratory research and analysis’, J. Comput. Chem. 2004, 25, 1605-1612. - PubMed
  54. N. M. O'Boyle, R. A. Sayle, ‘Comparing structural fingerprints using a literature-based similarity benchmark’, J. Cheminf. 2016, 8, 36. - PubMed
  55. D. R. Koes, M. P. Baumgartner, C. J. Camacho, ‘Lessons Learned in Empirical Scoring with smina from the CSAR 2011 Benchmarking Exercise’, J. Chem. Inf. Model. 2013, 53, 1893-1904. - PubMed
  56. N. D. Bland, C. Wang, C. Tallman, A. E. Gustafson, Z. Wang, T. D. Ashton, S. O. Ochiana, G. McAllister, K. Cotter, A. P. Fang, L. Gechijian, N. Garceau, R. Gangurde, R. Ortenberg, M. J. Ondrechen, R. K. Campbell, M. P. Pollastri, ‘Pharmacological Validation of Trypanosoma brucei Phosphodiesterases B1 and B2 as Druggable Targets for African Sleeping Sickness’, J. Med. Chem. 2011, 54, 8188-8194. - PubMed
  57. E. de Heuvel, A. K. Singh, P. Boronat, A. J. Kooistra, T. van der Meer, P. Sadek, A. R. Blaazer, N. C. Shaner, D. S. Bindels, G. Caljon, L. Maes, G. J. Sterk, M. Siderius, M. Oberholzer, I. J. P. de Esch, D. G. Brown, R. Leurs, ‘Alkynamide phthalazinones as a new class of TbrPDEB1 inhibitors (Part 2)’, Bioorg. Med. Chem. 2019, 27, 4013-4029. - PubMed
  58. E. de Heuvel, A. K. Singh, E. Edink, T. van der Meer, M. van der Woude, P. Sadek, M. P. Krell-Jørgensen, T. van den Bergh, J. Veerman, G. Caljon, T. D. Kalejaiye, M. Wijtmans, L. Maes, H. P. de Koning, G. Jan Sterk, M. Siderius, I. J. P. de Esch, D. G. Brown, R. Leurs, ‘Alkynamide phthalazinones as a new class of TbrPDEB1 inhibitors’, Bioorg. Med. Chem. 2019, 27, 3998-4012. - PubMed
  59. S. O. Ochiana, A. Gustafson, N. D. Bland, C. Wang, M. J. Russo, R. K. Campbell, M. P. Pollastri, ‘Synthesis and evaluation of human phosphodiesterases (PDE) 5 inhibitor analogs as trypanosomal PDE inhibitors. Part 2. Tadalafil analogs’, Bioorg. Med. Chem. Lett. 2012, 22, 2582-2584. - PubMed
  60. K. M. Orrling, C. Jansen, X. L. Vu, V. Balmer, P. Bregy, A. Shanmugham, P. England, D. Bailey, P. Cos, L. Maes, E. Adams, E. van den Bogaart, E. Chatelain, J.-R. Ioset, A. van de Stolpe, S. Zorg, J. Veerman, T. Seebeck, G. J. Sterk, I. J. P. de Esch, R. Leurs, ‘Catechol Pyrazolinones as Trypanocidals: Fragment-Based Design, Synthesis, and Pharmacological Evaluation of Nanomolar Inhibitors of Trypanosomal Phosphodiesterase B1’, J. Med. Chem. 2012, 55, 8745-8756. - PubMed
  61. I. G. Salado, A. K. Singh, C. Moreno-Cinos, G. Sakaine, M. Siderius, P. Van der Veken, A. Matheeussen, T. van der Meer, P. Sadek, S. Gul, L. Maes, G.-J. Sterk, R. Leurs, D. Brown, K. Augustyns, ‘Lead Optimization of Phthalazinone Phosphodiesterase Inhibitors as Novel Antitrypanosomal Compounds’, J. Med. Chem. 2020, 63, 3485-3507. - PubMed
  62. J. L. Woodring, N. D. Bland, S. O. Ochiana, R. K. Campbell, M. P. Pollastri, ‘Synthesis and assessment of catechol diether compounds as inhibitors of trypanosomal phosphodiesterase B1 (TbrPDEB1)’, Bioorg. Med. Chem. Lett. 2013, 23, 5971-5974. - PubMed
  63. D. M. Klug, M. H. Gelb, M. P. Pollastri, ‘Repurposing strategies for tropical disease drug discovery’, Bioorg. Med. Chem. Lett. 2016, 26, 2569-2576. - PubMed
  64. M. Sijm, J. Siciliano de Araújo, S. Kunz, S. Schroeder, E. Edink, K. M. Orrling, A. Matheeussen, T. van de Meer, P. Sadek, H. Custers, I. Cotillo, J. J. Martin, M. Siderius, L. Maes, D. G. Brown, M. de Nazaré Correia Soeiro, G. Sterk, I. J. P. de Esch, R. Leurs, ‘Phenyldihydropyrazolones as Novel Lead Compounds Against Trypanosoma cruzi’, ACS Omega 2019, 4, 6585-6596. - PubMed

Publication Types

Grant support