Display options
Share it on

Nat Commun. 2021 Dec 02;12(1):7042. doi: 10.1038/s41467-021-27387-1.

Mapping the serum proteome to neurological diseases using whole genome sequencing.

Nature communications

Grace Png, Andrei Barysenka, Linda Repetto, Pau Navarro, Xia Shen, Maik Pietzner, Eleanor Wheeler, Nicholas J Wareham, Claudia Langenberg, Emmanouil Tsafantakis, Maria Karaleftheri, George Dedoussis, Anders Mälarstig, James F Wilson, Arthur Gilly, Eleftheria Zeggini

Affiliations

  1. Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany. [email protected].
  2. TUM School of Medicine, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany. [email protected].
  3. Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
  4. Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK.
  5. MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
  6. Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China.
  7. Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden.
  8. MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.
  9. Computational Medicine, Berlin Institute of Health (BIH), Charité University Medicine, Berlin, Germany.
  10. Anogia Medical Centre, Anogia, Greece.
  11. Echinos Medical Centre, Echinos, Greece.
  12. Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece.
  13. Department of Medicine, Karolinska Institute, Solna, Sweden.
  14. Emerging Science & Innovation, Pfizer Worldwide Research, Development and Medical, Cambridge, MA, USA.
  15. Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany. [email protected].
  16. TUM School of Medicine, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany. [email protected].

PMID: 34857772 PMCID: PMC8640022 DOI: 10.1038/s41467-021-27387-1

Abstract

Despite the increasing global burden of neurological disorders, there is a lack of effective diagnostic and therapeutic biomarkers. Proteins are often dysregulated in disease and have a strong genetic component. Here, we carry out a protein quantitative trait locus analysis of 184 neurologically-relevant proteins, using whole genome sequencing data from two isolated population-based cohorts (N = 2893). In doing so, we elucidate the genetic landscape of the circulating proteome and its connection to neurological disorders. We detect 214 independently-associated variants for 107 proteins, the majority of which (76%) are cis-acting, including 114 variants that have not been previously identified. Using two-sample Mendelian randomisation, we identify causal associations between serum CD33 and Alzheimer's disease, GPNMB and Parkinson's disease, and MSR1 and schizophrenia, describing their clinical potential and highlighting drug repurposing opportunities.

© 2021. The Author(s).

References

  1. Public Health Nutr. 2017 Apr;20(6):1063-1074 - PubMed
  2. Nucleic Acids Res. 2021 Jan 8;49(D1):D1302-D1310 - PubMed
  3. Nat Genet. 2014 Sep;46(9):989-93 - PubMed
  4. Schizophr Res. 2015 Dec;169(1-3):369-373 - PubMed
  5. Rheumatology (Oxford). 2013 Jan;52(1):15-21 - PubMed
  6. Nat Commun. 2020 Dec 16;11(1):6397 - PubMed
  7. Nat Med. 2021 Jun;27(6):954-963 - PubMed
  8. Exp Mol Med. 2020 Mar;52(3):380-389 - PubMed
  9. Neuron. 2013 May 22;78(4):631-43 - PubMed
  10. Ann Gen Psychiatry. 2021 Feb 2;20(1):10 - PubMed
  11. Nat Genet. 2013 Dec;45(12):1452-8 - PubMed
  12. Nat Genet. 2015 Oct;47(10):1114-20 - PubMed
  13. World Psychiatry. 2017 Jun;16(2):163-180 - PubMed
  14. Nat Genet. 2011 Sep 18;43(10):977-83 - PubMed
  15. Semin Arthritis Rheum. 2013 Dec;43(3):303-13 - PubMed
  16. Am J Med Genet B Neuropsychiatr Genet. 2015 Dec;168(8):649-59 - PubMed
  17. Nature. 2018 Jun;558(7708):73-79 - PubMed
  18. Psychiatry Res. 2015 Oct 30;229(3):850-7 - PubMed
  19. Schizophr Bull. 2015 Sep;41(5):1123-32 - PubMed
  20. Front Neurosci. 2020 Jan 29;14:25 - PubMed
  21. Sci Rep. 2018 Nov 8;8(1):16537 - PubMed
  22. Cell. 2019 Dec 12;179(7):1469-1482.e11 - PubMed
  23. Nat Genet. 2021 Feb;53(2):143-146 - PubMed
  24. Asian Pac J Cancer Prev. 2019 Mar 26;20(3):789-793 - PubMed
  25. Genome Biol. 2016 Jun 06;17(1):122 - PubMed
  26. Ann Neurol. 2002 Oct;52(4):448-57 - PubMed
  27. Nat Rev Genet. 2021 Jan;22(1):19-37 - PubMed
  28. Elife. 2018 May 30;7: - PubMed
  29. Gigascience. 2015 Feb 25;4:7 - PubMed
  30. Curr Rheumatol Rep. 2013 Aug;15(8):350 - PubMed
  31. Cell Signal. 2009 Jun;21(6):836-46 - PubMed
  32. PLoS Genet. 2014 May 15;10(5):e1004383 - PubMed
  33. PLoS One. 2010 Aug 10;5(8):e12093 - PubMed
  34. J Biol Chem. 2002 Dec 20;277(51):49982-8 - PubMed
  35. Bioinformatics. 2019 Nov 1;35(22):4851-4853 - PubMed
  36. Schizophr Res. 2003 May 1;61(1):1-6 - PubMed
  37. Nat Neurosci. 2018 Oct;21(10):1310-1317 - PubMed
  38. Nat Rev Drug Discov. 2017 Jan;16(1):19-34 - PubMed
  39. Nat Commun. 2019 Jul 18;10(1):3160 - PubMed
  40. Biosci Rep. 2020 Jun 26;40(6): - PubMed
  41. Nat Genet. 2012 Jun 17;44(7):821-4 - PubMed
  42. Hum Mol Genet. 2015 Jun 15;24(12):3557-70 - PubMed
  43. Nucleic Acids Res. 2018 Jan 4;46(D1):D794-D801 - PubMed
  44. Nat Genet. 2019 Feb;51(2):230-236 - PubMed
  45. Nat Commun. 2017 Feb 27;8:14357 - PubMed
  46. Nat Commun. 2014 Nov 06;5:5345 - PubMed
  47. Nat Med. 2017 Jun;23(6):723-732 - PubMed
  48. Nat Commun. 2018 Aug 15;9(1):3268 - PubMed
  49. FEBS J. 2010 Dec;277(24):5040-50 - PubMed
  50. Nat Metab. 2020 Oct;2(10):1135-1148 - PubMed
  51. Am J Hum Genet. 2011 Jan 7;88(1):76-82 - PubMed
  52. PLoS One. 2010 Dec 07;5(12):e15004 - PubMed
  53. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D668-72 - PubMed
  54. Science. 2018 Aug 24;361(6404):769-773 - PubMed
  55. Nat Neurosci. 2013 Jul;16(7):848-50 - PubMed
  56. Bioinformatics. 2010 Sep 1;26(17):2190-1 - PubMed
  57. Nat Rev Rheumatol. 2014 Jun;10(6):374-80 - PubMed
  58. Hum Mol Genet. 2017 Jan 1;26(1):44-51 - PubMed
  59. Bioinformatics. 2016 Oct 15;32(20):3207-3209 - PubMed
  60. Lancet Neurol. 2017 Nov;16(11):877-897 - PubMed
  61. J Vasc Interv Radiol. 2013 Jun;24(6):787-92 - PubMed
  62. Heredity (Edinb). 2001 Jul;87(Pt 1):52-8 - PubMed
  63. Brain Behav Immun. 2018 Mar;69:336-350 - PubMed
  64. Nat Genet. 2018 May;50(5):737-745 - PubMed
  65. Nat Commun. 2013;4:2030 - PubMed
  66. Sleep Med. 2012 Jun;13(6):583-8 - PubMed
  67. Cardiovasc Intervent Radiol. 2019 Nov;42(11):1530-1536 - PubMed
  68. Nature. 2013 Jan 24;493(7433):532-6 - PubMed
  69. PLoS Genet. 2017 Nov 17;13(11):e1007081 - PubMed
  70. Nat Rev Immunol. 2005 Mar;5(3):201-14 - PubMed
  71. J Exp Med. 2014 Jul 28;211(8):1551-70 - PubMed
  72. Hum Mol Genet. 2016 Jun 1;25(11):2360-2365 - PubMed
  73. Crit Rev Immunol. 2014;34(3):241-61 - PubMed
  74. Neurobiol Dis. 2018 Dec;120:1-11 - PubMed
  75. Cephalalgia. 2017 Apr;37(5):435-441 - PubMed
  76. Lancet Neurol. 2019 May;18(5):459-480 - PubMed
  77. Alzheimers Dement. 2020 Aug;16(8):1134-1145 - PubMed
  78. Genet Epidemiol. 2008 Sep;32(6):567-73 - PubMed

Publication Types