Display options
Share it on

CNS Neurosci Ther. 2022 Jan;28(1):19-35. doi: 10.1111/cns.13768. Epub 2021 Dec 03.

Kynurenic acid in neurodegenerative disorders-unique neuroprotection or double-edged sword?.

CNS neuroscience & therapeutics

Aleksandra Ostapiuk, Ewa M Urbanska

Affiliations

  1. Laboratory of Cellular and Molecular Pharmacology, Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland.

PMID: 34862742 DOI: 10.1111/cns.13768

Abstract

AIMS: The family of kynurenine pathway (KP) metabolites includes compounds produced along two arms of the path and acting in clearly opposite ways. The equilibrium between neurotoxic kynurenines, such as 3-hydroxykynurenine (3-HK) or quinolinic acid (QUIN), and neuroprotective kynurenic acid (KYNA) profoundly impacts the function and survival of neurons. This comprehensive review summarizes accumulated evidence on the role of KYNA in Alzheimer's, Parkinson's and Huntington's diseases, and discusses future directions of potential pharmacological manipulations aimed to modulate brain KYNA.

DISCUSSION: The synthesis of specific KP metabolites is tightly regulated and may considerably vary under physiological and pathological conditions. Experimental data consistently imply that shift of the KP to neurotoxic branch producing 3-HK and QUIN formation, with a relative or absolute deficiency of KYNA, is an important factor contributing to neurodegeneration. Targeting specific brain regions to maintain adequate KYNA levels seems vital; however, it requires the development of precise pharmacological tools, allowing to avoid the potential cognitive adverse effects.

CONCLUSIONS: Boosting KYNA levels, through interference with the KP enzymes or through application of prodrugs/analogs with high bioavailability and potency, is a promising clinical approach. The use of KYNA, alone or in combination with other compounds precisely influencing specific populations of neurons, is awaiting to become a significant therapy for neurodegenerative disorders.

© 2021 The Authors. CNS Neuroscience & Therapeutics published by John Wiley & Sons Ltd.

Keywords: Alzheimer's disease; Huntington's disease; N-methyl-D-aspartate; Parkinson's disease; mitochondrial toxin; neurodegeneration

References

  1. Massudi H, Grant R, Guillemin GJ, Braidy N. NAD+ metabolism and oxidative stress: the golden nucleotide on a crown of thorns. Redox Rep. 2012;17(1):28-46. - PubMed
  2. Cervenka I, Agudelo LZ, Kynurenines RJL. Tryptophan’s metabolites in exercise, inflammation, and mental health. Science. 2017;357(6349):378-398.e5. - PubMed
  3. Stone TW, Stoy N, Darlington LG. An expanding range of targets for kynurenine metabolites of tryptophan. Trends Pharmacol Sci. 2013;34(2):136-143. - PubMed
  4. Bohár Z, Toldi J, Fülöp F, Vécsei L. Changing the face of kynurenines and neurotoxicity: therapeutic considerations. Int J Mol Sci. 2015;16(12):9772-9793. - PubMed
  5. Chen Y, Guillemin GJ. Kynurenine pathway metabolites in humans : disease and healthy states. Int J Tryptophan Resear. 2009;12:1-19. - PubMed
  6. Liebig J. Uber kynurensaeure. Justus Liebigs Ann Chem. 1853;86:125-126. - PubMed
  7. Homer A. The constitution of kynurenic acid. J Biol Chem. 1914;17:509-518. - PubMed
  8. Perkins MN, Stone TW. An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res. 1982;247(1):184-187. - PubMed
  9. Foster AC, Vezzani A, French ED, Schwarcz R. Kynurenic acid blocks neurotoxicity and seizures induced in rats by the related brain metabolite quinolinic acid. Neurosci Lett. 1984;48(3):273-278. - PubMed
  10. Schwarcz R, Du F, Schmidt W, et al. Kynurenic acid: a potential pathogen in brain disorders. Ann N Y Acad Sci. 1992;648:140-153. - PubMed
  11. Wirthgen E, Hoeflich A, Rebl A, Günther J. Kynurenic acid: the janus-faced role of an immunomodulatory tryptophan metabolite and its link to pathological conditions. Front Immunol. 2017;8:1957. - PubMed
  12. Badawy AA-B. Kynurenine pathway of tryptophan metabolism: regulatory and functional aspects. Int J Tryptophan Res. 2017;10:1178646917691938. - PubMed
  13. Asp L, Johansson A-S, Mann A, et al. Effects of pro-inflammatory cytokines on expression of kynurenine pathway enzymes in human dermal fibroblasts. J Inflamm. 2011;8(1):25. - PubMed
  14. Myint A-M, Kim Y-K. Network beyond IDO in psychiatric disorders: Revisiting neurodegeneration hypothesis. Prog Neuro-Psychopharmacol Biol Psychiatry. 2014;48:304-313. - PubMed
  15. Hornyák L, Dobos N, Koncz G, et al. The role of indoleamine-2,3-dioxygenase in cancer development, diagnostics, and therapy. Front Immunol. 2018;9:151. - PubMed
  16. Mazarei G, Leavitt BR. Indoleamine 2,3 dioxygenase as a potential therapeutic target in Huntington’s disease. J Huntingtons Dis. 2015;4(2):109-118. - PubMed
  17. Hayaishi O. Properties and function of indoleamine 2,3-dioxygenase. J Biochem. 1976;79(4):13-21. - PubMed
  18. Gál EM, Sherman AD. L-kynurenine: its synthesis and possible regulatory function in brain. Neurochem Res. 1980;5(3):223-239. - PubMed
  19. Biernacki T, Sandi D, Bencsik K, Vécsei L. Kynurenines in the pathogenesis of multiple sclerosis: therapeutic perspectives. Cells. 2020;9(6):1564. - PubMed
  20. Németh H, Toldi J, Vécsei L. Kynurenines, Parkinson’s disease and other neurodegenerative disorders: preclinical and clinical studies. J Neural Transm Suppl. 2006;70:285-304. - PubMed
  21. Fukui S, Schwarcz R, Rapoport SI, Takada Y, Smith QR. Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem. 1991;56(6):2007-2017. - PubMed
  22. Gál EM, Sherman AD. Synthesis and metabolism of L-kynurenine in rat brain. J Neurochem. 1978;30(3):607-613. - PubMed
  23. Tamburin M, Mostardini M, Benatti L. Kynurenine aminotransferase I (KATI) isoform gene expression in the rat brain: an in situ hybridization study. NeuroReport. 1999;10(1):61-65. - PubMed
  24. Roberts RC, Du F, McCarthy KE, Okuno E, Schwarcz R. Immunocytochemical localization of kynurenine aminotransferase in the rat striatum: a light and electron microscopic study. J Comp Neurol. 1992;326(1):82-90. - PubMed
  25. Rzeski W, Kocki T, Dybel A, et al. Demonstration of kynurenine aminotransferases I and II and characterization of kynurenic acid synthesis in cultured cerebral cortical neurons. J Neurosci Res. 2005;80(5):677-682. - PubMed
  26. Stazka J, Luchowski P, Urbanska EM. Homocysteine, a risk factor for atherosclerosis, biphasically changes the endothelial production of kynurenic acid. Eur J Pharmacol. 2005;517(3):217-223. - PubMed
  27. Guillemin GJ, Smythe G, Takikawa O, Brew BJ. Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia. 2005;49(1):15-23. - PubMed
  28. Guillemin GJ, Kerr SJ, Smythe GA, et al. Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem. 2001;78(4):842-853. - PubMed
  29. Fujigaki H, Yamamoto Y, Saito K. L-Tryptophan-kynurenine pathway enzymes are therapeutic target for neuropsychiatric diseases: Focus on cell type differences. Neuropharmacology. 2017;112(Pt B):264-274. - PubMed
  30. Stazka J, Luchowski P, Wielosz M, Kleinrok Z, Urbanska EM. Endothelium-dependent production and liberation of kynurenic acid by rat aortic rings exposed to L-kynurenine. Eur J Pharmacol. 2002;448(2-3):133-137. - PubMed
  31. Gramsbergen JB, Hodgkins PS, Rassoulpour A, Turski WA, Guidetti P, Schwarcz R. Brain-specific modulation of kynurenic acid synthesis in the rat. J Neurochem. 1997;69(1):290-298. - PubMed
  32. Guidetti P, Hoffman GE, Melendez-Ferro M, Albuquerque EX, Schwarcz R. Astrocytic localization of kynurenine aminotransferase II in the rat brain visualized by immunocytochemistry. Glia. 2007;55(1):78-92. - PubMed
  33. Herédi J, Berkó AM, Jankovics F, et al. Astrocytic and neuronal localization of kynurenine aminotransferase-2 in the adult mouse brain. Brain Struct Funct. 2017;222(4):1663-1672. - PubMed
  34. Jauch D, Urbańska EM, Guidetti P, et al. Dysfunction of brain kynurenic acid metabolism in Huntington’s disease: focus on kynurenine aminotransferases. J Neurol Sci. 1995;130(1):39-47. - PubMed
  35. Eastman CL, Urbanska EM, Chapman AG, Schwarcz R. Differential expression of the astrocytic enzymes 3-hydroxyanthranilic acid oxygenase, kynurenine aminotransferase and glutamine synthetase in seizure-prone and non-epileptic mice. Epilepsy Res. 1994;18(3):185-194. - PubMed
  36. Okada K, Angkawidjaja C, Koga Y, Kanaya S. Structural and mechanistic insights into the kynurenine aminotransferase-mediated excretion of kynurenic acid. J Struct Biol. 2014;185(3):257-266. - PubMed
  37. Guidetti P, Amori L, Sapko MT, Okuno E, Schwarcz R. Mitochondrial aspartate aminotransferase: a third kynurenate-producing enzyme in the mammalian brain. J Neurochem. 2007;102(1):103-111. - PubMed
  38. Okuno E, Schmidt W, Parks DA, Nakamura M, Schwarcz R. Measurement of rat brain kynurenine aminotransferase at physiological kynurenine concentrations. J Neurochem. 1991;57(2):533-540. - PubMed
  39. Bellocchi D, Macchiarulo A, Carotti A, Pellicciari R. Quantum mechanics/molecular mechanics (QM/MM) modeling of the irreversible transamination of l-kynurenine to kynurenic acid: the round dance of kynurenine aminotransferase II. Biochim Biophys Acta - Proteins Proteomics. 2009;1794(12):1802-1812. - PubMed
  40. Guidetti P, Okuno E, Schwarcz R. Characterization of rat brain kynurenine aminotransferases I and II. J Neurosci Res. 1997;50(3):457-465. - PubMed
  41. Yu P, Di Prospero NA, Sapko MT, et al. Biochemical and phenotypic abnormalities in kynurenine aminotransferase II-deficient mice. Mol Cell Biol. 2004;24(16):6919-6930. - PubMed
  42. Sapko M, Guidetti P, Yu P, et al. Endogenous kynurenate controls the vulnerability of striatal neurons to quinolinate: implications for Huntington’s disease. Exp Neurol. 2006;197:31-40. - PubMed
  43. Smith JR, Jamie JF, Guillemin GJ. Kynurenine-3-monooxygenase: a review of structure, mechanism, and inhibitors. Drug Discov Today. 2016;21(2):315-324. - PubMed
  44. Kocki T, Luchowski P, Luchowska E, Wielosz M, Turski WA, Urbanska EM. L-cysteine sulphinate, endogenous sulphur-containing amino acid, inhibits rat brain kynurenic acid production via selective interference with kynurenine aminotransferase II. Neurosci Lett. 2003;346(1):97-100. - PubMed
  45. Saran T, Hilgier W, Urbanska EM, Turski WA, Albrecht J. Kynurenic acid synthesis in cerebral cortical slices of rats with progressing symptoms of thioacetamide-induced hepatic encephalopathy. J Neurosci Res. 2004;75(3):436-440. - PubMed
  46. Luchowska E, Luchowski P, Paczek R, et al. Dual effect of DL-homocysteine and S-adenosylhomocysteine on brain synthesis of the glutamate receptor antagonist, kynurenic acid. J Neurosci Res. 2005;79(3):375-382. - PubMed
  47. Luchowska E, Kloc R, Olajossy B, et al. β-adrenergic enhancement of brain kynurenic acid production mediated via cAMP-related protein kinase A signaling. Prog Neuro-Psychopharmacol Biol Psychiatry. 2009;33(3):519-529. - PubMed
  48. Urbanska EM, Kocki T, Saran T, Kleinrok Z, Turski WA. Impairment of brain kynurenic acid production by glutamate metabotropic receptor agonists. NeuroReport. 1997;8(16):3501-3505. - PubMed
  49. Luchowski P, Urbanska EM. SNAP and SIN-1 increase brain production of kynurenic acid. Eur J Pharmacol. 2007;563(1):130-133. - PubMed
  50. Kloc R, Luchowska E, Wielosz M, Owe-Larsson B, Urbanska EM. Memantine increases brain production of kynurenic acid via protein kinase A-dependent mechanism. Neurosci Lett. 2008;435(2):169-173. - PubMed
  51. Kocki T, Wnuk S, Kloc R, Kocki J, Owe-Larsson B, Urbanska EM. New insight into the antidepressants action: modulation of kynurenine pathway by increasing the kynurenic acid/3-hydroxykynurenine ratio. J Neural Transm. 2012;119(2):235-243. - PubMed
  52. Kocki T, Wielosz M, Turski WA, Urbanska EM. Enhancement of brain kynurenic acid production by anticonvulsants-novel mechanism of antiepileptic activity? Eur J Pharmacol. 2006;541(3):147-151. - PubMed
  53. Chmiel-Perzyńska I, Perzyński A, Olajossy B, Gil-Kulik P, Kocki J, Urbanska EM. Losartan reverses hippocampal increase of kynurenic acid in type 1 diabetic rats: a novel procognitive aspect of sartan action. J Diabetes Res. 2019;2019:4957879. - PubMed
  54. Blanco Ayala T, Lugo Huitrón R, Carmona Aparicio L, et al. Alternative kynurenic acid synthesis routes studied in the rat cerebellum. Front Cell Neurosci. 2015;9:178. - PubMed
  55. Ramos-Chávez LA, Lugo Huitrón R, González Esquivel D, et al. Relevance of alternative routes of kynurenic acid production in the brain. Oxid Med Cell Longev. 2018;2018:5272741. - PubMed
  56. Russi P, Carlà V, Moroni F. Indolpyruvic acid administration increases the brain content of kynurenic acid. Is this a new avenue to modulate excitatory amino acid receptors in vivo? Biochem Pharmacol. 1989;38(15):2405-2409. - PubMed
  57. Bartolini B, Corniello C, Sella A, Somma F, Politi V. The Enol Tautomer of Indole-3-Pyruvic Acid as A Biological Switch in Stress Responses BT - Developments in Tryptophan and Serotonin Metabolism. Comparative aspects of circadian rhythms, Kerala, India: Transworld Research Network. Springer US; 2003; 601-608. - PubMed
  58. Politi V, Lavaggi MV, Di Stazio G, Margonelli A. Indole-3-pyruvic acid as a direct precursor of kynurenic acid. Adv Exp Med Biol. 1991;294:515-518. - PubMed
  59. Tomczyk T, Urbanska EM. Experimental hypothyroidism raises brain kynurenic acid - Novel aspect of thyroid dysfunction. Eur J Pharmacol. 2020;883:1-8. - PubMed
  60. Ramos-Chávez LA, Lugo Huitrón R, González Esquivel D, et al. Decreased serum and red blood cell kynurenic acid levels in Alzheimer’s disease. Neurochem Int. 2007;50(2):308-313. - PubMed
  61. Baran H, Cairns N, Lubec B, Lubec G. Increased kynurenic acid levels and decreased brain kynurenine aminotransferasei in patients with down syndrome. Life Sci. 1996;58(21):1891-1899. - PubMed
  62. Ramirez Ortega D, Ovalle Rodríguez P, Pineda B, et al. Kynurenine pathway as a new target of cognitive impairment induced by lead toxicity during the lactation. Sci Rep. 2020;10(1):3184. - PubMed
  63. Salvati P, Ukmar G, Dho L, et al. Brain concentrations of kynurenic acid after a systemic neuroprotective dose in the gerbil model of global ischemia. Prog Neuro-Psychopharmacol Biol Psychiatry. 1999;23(4):741-752. - PubMed
  64. Uwai Y, Honjo H, Iwamoto K. Interaction and transport of kynurenic acid via human organic anion transporters hOAT1 and hOAT3. Pharmacol Res. 2012;65(2):254-260. - PubMed
  65. Uwai Y, Honjo E. Transport of xanthurenic acid by rat/human organic anion transporters OAT1 and OAT3. Biosci Biotechnol Biochem. 2013;77(7):1517-1521. - PubMed
  66. Russi P, Alesiani M, Lombardi G, Davolio P, Pellicciari R, Moroni F. Nicotinylalanine increases the formation of kynurenic acid in the brain and antagonizes convulsions. J Neurochem. 1992;59(6):2076-2080. - PubMed
  67. Shepard PD, Joy B, Clerkin L, Schwarcz R. Micromolar brain levels of kynurenic acid are associated with a disruption of auditory sensory gating in the rat. Neuropsychopharmacology. 2003;28(8):1454-1462. - PubMed
  68. Turski MP, Turska M, Zgrajka W, Kuc D, Turski WA. Presence of kynurenic acid in food and honeybee products. Amino Acids. 2009;36(1):75-80. - PubMed
  69. Kuc D, Zgrajka W, Parada-Turska J, Urbanik-Sypniewska T, Turski WA. Micromolar concentration of kynurenic acid in rat small intestine. Amino Acids. 2008;35(2):503-505. - PubMed
  70. Chiarugi A, Calvani M, Meli E, Traggiai E, Moroni F. Synthesis and release of neurotoxic kynurenine metabolites by human monocyte-derived macrophages. J Neuroimmunol. 2001;120(1-2):190-198. - PubMed
  71. Guidetti P, Schwarcz R. 3-Hydroxykynurenine potentiates quinolinate but not NMDA toxicity in the rat striatum. Eur J Neurosci. 1999;11(11):3857-3863. - PubMed
  72. Morrison PF, Morishige GM, Beagles KE, Heyes MP. Quinolinic acid is extruded from the brain by a probenecid-sensitive carrier system: a quantitative analysis. J Neurochem. 1999;72(5):2135-2144. - PubMed
  73. Braidy N, Grant R, Adams S, Brew BJ, Guillemin GJ. Mechanism for quinolinic acid cytotoxicity in human astrocytes and neurons. Neurotox Res. 2009;16(1):77-86. - PubMed
  74. Jones SP, Guillemin GJ, Brew BJ. The kynurenine pathway in stem cell biology. Int J Tryptophan Res. 2013;6:57-66. - PubMed
  75. Lugo-Huitrón R, Ugalde Muñiz P, Pineda B, Pedraza-Chaverrí J, Ríos C, Pérez-de la Cruz V. Quinolinic acid: an endogenous neurotoxin with multiple targets. Oxid Med Cell Longev. 2013;2013:104024. - PubMed
  76. Whetsell WO, Schwarcz R. Prolonged exposure to submicromolar concentrations of quinolinic acid causes excitotoxic damage in organotypic cultures of rat corticostriatal system. Neurosci Lett. 1989;97(3):271-275. - PubMed
  77. Guillemin GJ. Quinolinic acid, the inescapable neurotoxin. FEBS J. 2012;279(8):1356-1365. - PubMed
  78. Schurr A, Rigor BM. Quinolinate potentiates the neurotoxicity of excitatory amino acids in hypoxic neuronal tissue in vitro. Brain Res. 1993;617(1):76-80. - PubMed
  79. Pierozan P, Zamoner A, Soska AK, et al. Acute intrastriatal administration of quinolinic acid provokes hyperphosphorylation of cytoskeletal intermediate filament proteins in astrocytes and neurons of rats. Exp Neurol. 2010;224(1):188-196. - PubMed
  80. Steiner J, Bogerts B, Sarnyai Z, et al. Bridging the gap between the immune and glutamate hypotheses of schizophrenia and major depression: potential role of glial NMDA receptor modulators and impaired blood-brain barrier integrity. World J Biol Psychiatry. 2012;13(7):482-492. - PubMed
  81. Kepplinger B, Baran H, Kainz A, Ferraz-Leite H, Newcombe J, Kalina P. Age-related increase of kynurenic acid in human cerebrospinal fluid - IgG and beta2-microglobulin changes. Neurosignals. 2005;14(3):126-135. - PubMed
  82. Turski WA, Nakamura M, Todd WP, Carpenter BK, Whetsell WOJ, Schwarcz R. Identification and quantification of kynurenic acid in human brain tissue. Brain Res. 1988;454(1-2):164-169. - PubMed
  83. Beal MF, Matson WR, Storey E, et al. Kynurenic acid concentrations are reduced in Huntington’s disease cerebral cortex. J Neurol Sci. 1992;108(1):80-87. - PubMed
  84. Swartz KJ, Matson WR, MacGarvey U, Ryan EA, Beal MF. Measurement of kynurenic acid in mammalian brain extracts and cerebrospinal fluid by high-performance liquid chromatography with fluorometric and coulometric electrode array detection. Anal Biochem. 1990;185(2):363-376. - PubMed
  85. Carlá V, Lombardi G, Beni M, Russi P, Moneti G, Moroni F. Identification and measurement of kynurenic acid in the rat brain and other organs. Anal Biochem. 1988;169(1):89-94. - PubMed
  86. Sorgdrager FJH, Vermeiren Y, Faassen M, et al. Age- and disease-specific changes of the kynurenine pathway in Parkinson’s and Alzheimer’s disease. J Neurochem. 2019;151(5):656-668. - PubMed
  87. Urbańska EM, Luchowski P, Luchowska E, et al. Serum kynurenic acid positively correlates with cardiovascular disease risk factor, homocysteine: a study in stroke patients. Pharmacol Rep. 2006;58(4):507-511. - PubMed
  88. Gramsbergen JBP, Schmidt W, Turski WA, Schwarcz R. Age-related changes in kynurenic acid production in rat brain. Brain Res. 1992;588(1):1-5. - PubMed
  89. Moroni F, Russi P, Carlá V, Lombardi G. Kynurenic acid is present in the rat brain and its content increases during development and aging processes. Neurosci Lett. 1988;94(1):145-150. - PubMed
  90. Braidy N, Guillemin GJ, Mansour H, Chan-Ling T, Grant R. Changes in kynurenine pathway metabolism in the brain, liver and kidney of aged female Wistar rats. FEBS J. 2011;278(22):4425-4434. - PubMed
  91. Wonodi I, McMahon RP, Krishna N, et al. Influence of kynurenine 3-monooxygenase (KMO) gene polymorphism on cognitive function in schizophrenia. Schizophr Res. 2014;160(1):80-87. - PubMed
  92. Kessler M, Terramani T, Lynch G, Baudry M. A glycine site associated with N-Methyl-d-aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem. 1989;52(4):1319-1328. - PubMed
  93. Weber M, Dietrich D, Gräsel I, Reuter G, Seifert G, Steinhäuser C. 6-Hydroxykynurenic acid and kynurenic acid differently antagonise AMPA and NMDA receptors in hippocampal neurones. J Neurochem. 2001;77(4):1108-1115. - PubMed
  94. Stone TW, Forrest CM, Darlington LG. Kynurenine pathway inhibition as a therapeutic strategy for neuroprotection. FEBS J. 2012;279(8):1386-1397. - PubMed
  95. Urbanska EM, Chmiel-Perzyńska I, Perzyński A, Derkacz M, Owe-Larsson B. Endogenous Kynurenic Acid and Neurotoxicity. Handbook of Neurotoxicity. Springer; 2021:1-31. - PubMed
  96. Urbanska E, Ikonomidou C, Sieklucka M, Turski WA. Aminooxyacetic acid produces excitotoxic lesions in the rat striatum. Synapse. 1991;9(2):129-135. - PubMed
  97. Németh H, Toldi J, Kynurenines VL. Parkinson’s Disease and Other Neurodegenerative Disorders: Preclinical and Clinical Studies. Parkinson’s Disease and Related Disorders. Springer Vienna; 2006:285-304. - PubMed
  98. Amori L, Guidetti P, Pellicciari R, Kajii Y, Schwarcz R. On the relationship between the two branches of the kynurenine pathway in the rat brain in vivo. J Neurochem. 2009;109(2):316-325. - PubMed
  99. Beggiato S, Tanganelli S, Fuxe K, Antonelli T, Schwarcz R, Ferraro L. Endogenous kynurenic acid regulates extracellular GABA levels in the rat prefrontal cortex. Neuropharmacology. 2014;82:11-18. - PubMed
  100. Wu H-Q, Pereira EFR, Bruno JP, Pellicciari R, Albuquerque EX, Schwarcz R. The astrocyte-derived alpha7 nicotinic receptor antagonist kynurenic acid controls extracellular glutamate levels in the prefrontal cortex. J Mol Neurosci. 2010;40(1-2):204-210. - PubMed
  101. Zmarowski A, Wu H-Q, Brooks JM, et al. Astrocyte-derived kynurenic acid modulates basal and evoked cortical acetylcholine release. Eur J Neurosci. 2009;29(3):529-538. - PubMed
  102. Carpenedo R, Pittaluga A, Cozzi A, et al. Presynaptic kynurenate-sensitive receptors inhibit glutamate release. Eur J Neurosci. 2001;13(11):2141-2147. - PubMed
  103. Wang J, Simonavicius N, Wu X, et al. Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem. 2006;281(31):22021-22028. - PubMed
  104. Guo J, Williams DJ, Puhl HL 3rd, Ikeda SR. Inhibition of N-type calcium channels by activation of GPR35, an orphan receptor, heterologously expressed in rat sympathetic neurons. J Pharmacol Exp Ther. 2008;324(1):342-351. - PubMed
  105. Berlinguer-Palmini R, Masi A, Narducci R, et al. GPR35 activation reduces Ca2+ transients and contributes to the kynurenic acid-dependent reduction of synaptic activity at CA3-CA1 synapses. PLoS One. 2013;8(11):82180. - PubMed
  106. Cosi C, Mannaioni G, Cozzi A, et al. G-protein coupled receptor 35 (GPR35) activation and inflammatory pain: Studies on the antinociceptive effects of kynurenic acid and zaprinast. Neuropharmacology. 2011;60(7-8):1227-1231. - PubMed
  107. DiNatale BC, Murray IA, Schroeder JC, et al. Kynurenic acid is a potent endogenous aryl hydrocarbon receptor ligand that synergistically induces interleukin-6 in the presence of inflammatory signaling. Toxicol Sci. 2010;115(1):89-97. - PubMed
  108. Moroni F, Cozzi A, Sili M, Mannaioni G. Kynurenic acid: a metabolite with multiple actions and multiple targets in brain and periphery. J Neural Transm. 2012;119(2):133-139. - PubMed
  109. Lugo-Huitrón R, Blanco-Ayala T, Ugalde-Muñiz P, et al. On the antioxidant properties of kynurenic acid: free radical scavenging activity and inhibition of oxidative stress. Neurotoxicol Teratol. 2011;33(5):538-547. - PubMed
  110. Albuquerque EX, Pereira EFR, Alkondon M, Rogers SW. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev. 2009;89(1):73-120. - PubMed
  111. Rassoulpour A, Wu H-Q, Ferre S, Schwarcz R. Nanomolar concentrations of kynurenic acid reduce extracellular dopamine levels in the striatum. J Neurochem. 2005;93(3):762-765. - PubMed
  112. Stone TW. Does kynurenic acid act on nicotinic receptors? An assessment of the evidence. J Neurochem. 2020;152(6):627-649. - PubMed
  113. Boros FA, Vécsei L. Immunomodulatory effects of genetic alterations affecting the kynurenine pathway. Front Immunol. 2019;10:2570. - PubMed
  114. Riedel G, Platt B, Micheau J. Glutamate receptor function in learning and memory. Behav Brain Res. 2003;140(1-2):1-47. - PubMed
  115. Erhardt S, Schwieler L, Emanuelsson C, Geyer M. Endogenous kynurenic acid disrupts prepulse inhibition. Biol Psychiatry. 2004;56(4):255-260. - PubMed
  116. Chess AC, Simoni MK, Alling TE, Bucci DJ. Elevations of endogenous kynurenic acid produce spatial working memory deficits. Schizophr Bull. 2007;33(3):797-804. - PubMed
  117. Gellért L, Varga D, Ruszka M, et al. Behavioural studies with a newly developed neuroprotective KYNA-amide. J Neural Transm. 2012;119(2):165-172. - PubMed
  118. Kozak R, Campbell BM, Strick CA, et al. Reduction of brain kynurenic acid improves cognitive function. J Neurosci. 2014;34(32):10592-10602. - PubMed
  119. Ghosh R, Tabrizi SJ. Clinical features of Huntington’s disease. 2018;1-28. - PubMed
  120. Bates GP, Dorsey R, Gusella JF, et al. Huntington disease. Nat Rev Dis Prim. 2015;1:15005. - PubMed
  121. Wilton DK, Stevens B. The contribution of glial cells to Huntington’s disease pathogenesis. Neurobiol Dis. 2020;143:104963. - PubMed
  122. Valadão PAC, Santos KBS, Ferreira e Vieira TH, et al. Inflammation in Huntington’s disease: a few new twists on an old tale. J Neuroimmunol. 2020;348:577380. - PubMed
  123. Tobore TO. Towards a comprehensive understanding of the contributions of mitochondrial dysfunction and oxidative stress in the pathogenesis and pathophysiology of Huntington’s disease. J Neurosci Res. 2019;97(11):1455-1468. - PubMed
  124. Schwarcz R, Whetsell WO, Mangano RM. Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science. 1983;219(4582):316-318. - PubMed
  125. Beal MF, Ferrante RJ, Swartz KJ, Kowall NW. Chronic quinolinic acid lesions in rats closely resemble Huntington’s disease. J Neurosci. 1991;11(6):1649-1659. - PubMed
  126. Luchowski P, Luchowska E, Turski WA, Urbanska EM. 1-Methyl-4-phenylpyridinium and 3-nitropropionic acid diminish cortical synthesis of kynurenic acid via interference with kynurenine aminotransferases in rats. Neurosci Lett. 2002;330(1):49-52. - PubMed
  127. Csillik A, Knyihár E, Okuno E, Krisztin-Péva B, Csillik B, Vécsei L. Effect of 3-nitropropionic acid on kynurenine aminotransferase in the rat brain. Exp Neurol. 2002;177(1):233-241. - PubMed
  128. Gould DH, Gustine DL. Basal ganglia degeneration, myelin alterations, and enzyme inhibition induced in mice by the plant toxin 3-nitropropanoic acid. Neuropathol Appl Neurobiol. 8(5):377-393. - PubMed
  129. Borlongan CV, Koutouzis TK, Sanberg PR. 3-Nitropropionic acid animal model and Huntington’s disease. Neurosci Biobehav Rev. 1997;21(3):289-293. - PubMed
  130. Urbanska EM, Blaszczak P, Saran T, Kleinrok Z, Turski WA. Mitochondrial toxin 3-nitropropionic acid evokes seizures in mice. Eur J Pharmacol. 1998;359(1):55-58. - PubMed
  131. Brouillet E, Jacquard C, Bizat N, Blum D. 3-Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington’s disease. J Neurochem. 2005;95(6):1521-1540. - PubMed
  132. Guidetti P, Reddy PH, Tagle D, Schwarcz R. Early kynurenergic impairment in Huntington’s disease and in a transgenic animal model. Neurosci Lett. 2000;283:233-235. - PubMed
  133. Sathyasaikumar KV, Stachowski EK, Amori L, Guidetti P, Muchowski PJ, Schwarcz R. Dysfunctional kynurenine pathway metabolism in the R6/2 mouse model of Huntington’s disease. J Neurochem. 2010;113(6):1416-1425. - PubMed
  134. Connick JH, Carlà V, Moroni F, Stone TW. Increase in kynurenic acid in Huntington’s disease motor cortex. J Neurochem. 1989;52(3):985-987. - PubMed
  135. Connick JH, Stone TW. Quinolinic acid effects on amino acid release from the rat cerebral cortex in vitro and in vivo. Br J Pharmacol. 1988;93(4):868-876. - PubMed
  136. Beal MF, Matson WR, Swartz KJ, Gamache PH, Bird ED. Kynurenine pathway measurements in Huntington’s disease striatum: evidence for reduced formation of kynurenic acid. J Neurochem. 1990;55(4):1327-1339. - PubMed
  137. Guidetti P, Luthi-Carter RE, Augood SJ, Schwarcz R. Neostriatal and cortical quinolinate levels are increased in early grade Huntington’s disease. Neurobiol Dis. 2004;17(3):455-461. - PubMed
  138. Stoy N, Mackay GM, Forrest CM, et al. Tryptophan metabolism and oxidative stress in patients with Huntington’s disease. J Neurochem. 2005;93(3):611-623. - PubMed
  139. Forrest CM, Mackay GM, Stoy N, et al. Blood levels of kynurenines, interleukin-23 and soluble human leucocyte antigen-G at different stages of Huntington’s disease. J Neurochem. 2010;112(1):112-122. - PubMed
  140. Rodrigues FB, Byrne LM, Lowe AJ, et al. Kynurenine pathway metabolites in cerebrospinal fluid and blood as potential biomarkers in Huntington’s disease. J Neurochem. 2021.158(2):539-553. - PubMed
  141. Lang AE, Lozano AM. Parkinson’s disease. N Engl J Med. 1998;339(15):1044-1053. - PubMed
  142. Dexter DT, Jenner P. Parkinson disease: from pathology to molecular disease mechanisms. Free Radic Biol Med. 2013;62:132-144. - PubMed
  143. Klockgether T, Turski L. NMDA antagonists potentiate antiparkinsonian actions of L-dopa in monoamine-depleted rats. Ann Neurol. 1990;28(4):539-546. - PubMed
  144. Klockgether T, Turski L, Honoré T, et al. The AMPA receptor antagonist NBQX has antiparkinsonian effects in monoamine-depleted rats and MPTP-treated monkeys. Ann Neurol. 1991;30(5):717-723. - PubMed
  145. Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science. 1983;219(4587):979-980. - PubMed
  146. Langston JW. The MPTP story. J Parkinsons Dis. 2017;7(s1):S11-S19. - PubMed
  147. Schildknecht S, Di Monte DA, Pape R, Tieu K, Leist M. Tipping Points And Endogenous Determinants Of Nigrostriatal Degeneration by MPTP. Trends Pharmacol Sci. 2017;38(6):541-555. - PubMed
  148. Knyihár-Csillik E, Chadaide Z, Mihály A, Krisztin-Péva B, Fenyő R, Vécsei L. Effect of 6-hydroxydopamine treatment on kynurenine aminotransferase-I (KAT-I) immunoreactivity of neurons and glial cells in the rat substantia nigra. Acta Neuropathol. 2006;112(2):127-137. - PubMed
  149. Knyihár-Csillik E, Csillik B, Pákáski M, et al. Decreased expression of kynurenine aminotransferase-I (KAT-I) in the substantia nigra of mice after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. Neuroscience. 2004;126(4):899-914. - PubMed
  150. Lee DY, Lee K-S, Lee HJ, et al. Kynurenic acid attenuates MPP+-induced dopaminergic neuronal cell death via a Bax-mediated mitochondrial pathway. Eur J Cell Biol. 2008;87(6):389-397. - PubMed
  151. Ogawa T, Matson WR, Beal MF, et al. Kynurenine pathway abnormalities in Parkinson’s disease. Neurology. 1992;42(9):1702-1706. - PubMed
  152. Caudle WM, Zhang J. Glutamate, excitotoxicity, and programmed cell death in Parkinson disease. Exp Neurol. 2009;220(2):230. - PubMed
  153. Hartai Z, Klivenyi P, Janaky T, Penke B, Dux L, Vecsei L. Kynurenine metabolism in plasma and in red blood cells in Parkinson’s disease. J Neurol Sci. 2005;239(1):31-35. - PubMed
  154. Oxenkrug G, van der Hart M, Roeser J, Summergrad P. Peripheral tryptophan - kynurenine metabolism associated with metabolic syndrome is different in Parkinson’s and Alzheimer’s diseases. Endocrinol Diabetes Metab J. 2017;1(4). - PubMed
  155. Havelund J, Heegaard N, Faergeman N, Gramsbergen J. Biomarker research in Parkinson’s disease using metabolite profiling. Metabolites. 2017;7(3):42. - PubMed
  156. Chang K-H, Cheng M-L, Tang H-Y, Huang C-Y, Wu Y-R, Chen C-M. Alternations of metabolic profile and kynurenine metabolism in the plasma of Parkinson’s disease. Mol Neurobiol. 2018;55(8):6319-6328. - PubMed
  157. Heilman PL, Wang EW, Lewis MM, et al. Tryptophan metabolites are associated with symptoms and nigral pathology in Parkinson’s disease. Mov Disord. 2020;35(11):2028-2037. - PubMed
  158. McKeith IG, Dickson DW, Lowe J, et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology. 2005;65(12):1863-1872. - PubMed
  159. Ting KK, Brew B, Guillemin G. The involvement of astrocytes and kynurenine pathway in Alzheimer’s disease. Neurotox Res. 2007;12(4):247-262. - PubMed
  160. Baran H, Jellinger K, Deecke L. Kynurenine metabolism in Alzheimer’s disease. J Neural Transm. 1999;106(2):165-181. - PubMed
  161. Zwilling D, Huang S-Y, Sathyasaikumar KV, et al. Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell. 2011;145(6):863-874. - PubMed
  162. Widner B, Leblhuber F, Walli J, Tilz GP, Demel U, Fuchs D. Tryptophan degradation and immune activation in Alzheimer’s disease. J Neural Transm. 2000;107(3):343-353. - PubMed
  163. Linderholm KR, Skogh E, Olsson SK, et al. Increased levels of kynurenine and kynurenic acid in the CSF of patients with schizophrenia. Schizophr Bull. 2012;38(3):426-432. - PubMed
  164. Wennström M, Nielsen HM, Orhan F, Londos E, Minthon L, Erhardt S. Kynurenic acid levels in cerebrospinal fluid from patients with Alzheimer’s disease or dementia with Lewy bodies. Int J Tryptophan Res. 2014;7:1-7. - PubMed
  165. González-Sánchez M, Jiménez J, Narváez A, et al. Kynurenic acid levels are increased in the CSF of Alzheimer’s disease patients. Biomolecules. 2020;10(4):1-16. - PubMed
  166. Jacobs KR, Lim CK, Blennow K, et al. Correlation between plasma and CSF concentrations of kynurenine pathway metabolites in Alzheimer’s disease and relationship to amyloid-β and tau. Neurobiol Aging. 2019;80:11-20. - PubMed
  167. Van Der Velpen V, Teav T, Gallart-Ayala H, et al. Systemic and central nervous system metabolic alterations in Alzheimer’s disease. Alzheimer’s Res Ther. 2019;11(1):1-12. - PubMed
  168. Heyes MP, Saito K, Crowley JS, et al. Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain A J Neurol. 1992;115 (Pt 5):1249-1273. - PubMed
  169. Gulaj E, Pawlak K, Bien B, Pawlak D. Kynurenine and its metabolites in Alzheimer’s disease patients. Adv Med Sci. 2010;55(2):204-211. - PubMed
  170. Whiley L, Chappell KE, D’Hondt E, et al. Metabolic phenotyping reveals a reduction in the bioavailability of serotonin and kynurenine pathway metabolites in both the urine and serum of individuals living with Alzheimer’s disease. Alzheimers Res Ther. 2021;13(1):20. - PubMed
  171. Muench G, Schinzel R, Loske C, et al. Alzheimer’s disease - Synergistic effects of glucose deficit, oxidative stress and advanced glycation endproducts. J Neural Transm. 1998;105:439-461. - PubMed
  172. Hirsch EC, Hunot S, Damier P, Faucheux B. Glial cells and inflammation in parkinson’s disease: a role in neurodegeneration? Ann Neurol. 1998;44(S1):S115-S120. - PubMed
  173. Pitter KL, Tamagno I, Feng X, et al. The SHH/Gli pathway is reactivated in reactive glia and drives proliferation in response to neurodegeneration-induced lesions. Glia. 2014;62(10):1595-1607. - PubMed
  174. Robinson KSL, Stewart AM, Cachat J, Landsman S, Gebhardt M, Kalueff AV. Psychopharmacological effects of acute exposure to kynurenic acid (KYNA) in zebrafish. Pharmacol Biochem Behav. 2013;108:54-60. - PubMed
  175. Akagbosu CO, Evans GC, Gulick D, Suckow RF, Bucci DJ. Exposure to kynurenic acid during adolescence produces memory deficits in adulthood. Schizophr Bull. 2012;38(4):769-778. - PubMed
  176. Alexander KS, Pocivavsek A, Wu H-Q, Pershing ML, Schwarcz R, Bruno JP. Early developmental elevations of brain kynurenic acid impair cognitive flexibility in adults: reversal with galantamine. Neuroscience. 2013;238:19-28. - PubMed
  177. Pocivavsek A, Thomas MAR, Elmer GI, Bruno JP, Schwarcz R. Continuous kynurenine administration during the prenatal period, but not during adolescence, causes learning and memory deficits in adult rats. Psychopharmacology. 2014;231(14):2799-2809. - PubMed
  178. Bahn A, Ljubojević M, Lorenz H, et al. Murine renal organic anion transporters mOAT1 and mOAT3 facilitate the transport of neuroactive tryptophan metabolites. Am J Physiol - Cell Physiol. 2005;289(5):1075-1084. - PubMed
  179. Guillemin GJ, Brew BJ, Noonan CE, Takikawa O, Cullen KM. Indoleamine 2,3 dioxygenase and quinolinic acid Immunoreactivity in Alzheimer’s disease hippocampus. Neuropathol Appl Neurobiol. 2005;31(4):395-404. - PubMed
  180. Huang Y-S, Ogbechi J, Clanchy FI, Williams RO, Stone TW. IDO and kynurenine metabolites in peripheral and CNS disorders. Front Immunol. 2020;11:388. - PubMed
  181. Zhang S, Collier MEW, Heyes DJ, Giorgini F, Scrutton NS. Advantages of brain penetrating inhibitors of kynurenine-3-monooxygenase for treatment of neurodegenerative diseases. Arch Biochem Biophys. 2021;697:108702. - PubMed
  182. Phillips RS, Iradukunda EC, Hughes T, Bowen JP. Modulation of enzyme activity in the kynurenine pathway by kynurenine monooxygenase inhibition. Front Mol Biosci. 2019;6:3. - PubMed
  183. Jacobs KR, Castellano-Gonzalez G, Guillemin GJ, Lovejoy DB. Major developments in the design of inhibitors along the kynurenine pathway. Curr Med Chem. 2017;24(23):2471-2495. - PubMed
  184. Connick JH, Heywood GC, Sills GJ, Thompson GG, Brodie MJ, Stone TW. Nicotinylalanine increases cerebral kynurenic acid content and has anticonvulsant activity. Gen Pharmacol. 1992;23(2):235-239. - PubMed
  185. Miranda AF, Boegman RJ, Beninger RJ, Jhamandas K. Protection against quinolinic acid-mediated excitotoxicity in nigrostriatal dopaminergic neurons by endogenous kynurenic acid. Neuroscience. 1997;78(4):967-975. - PubMed
  186. Pellicciari R, Natalini B, Costantino G, et al. Modulation of the kynurenine pathway in search for new neuroprotective agents. Synthesis and preliminary evaluation of (m-Nitrobenzoyl)alanine, a potent inhibitor of kynurenine-3-hydroxylase. J Med Chem. 1994;37(5):647-655. - PubMed
  187. Speciale C, Wu HQ, Cini M, Marconi M, Varasi M, Schwarcz R. (R, S)-3,4-dichlorobenzoylalanine (FCE 28833A) causes a large and persistent increase in brain kynurenic acid levels in rats. Eur J Pharmacol. 1996;315(3):263-267. - PubMed
  188. Phillips RS, Anderson AD, Gentry HG, Güner OF, Bowen JP. Substrate and inhibitor specificity of kynurenine monooxygenase from Cytophaga hutchinsonii. Bioorg Med Chem Lett. 2017;27(8):1705-1708. - PubMed
  189. Pellicciari R, Amori L, Costantino G, et al. Modulation of the kynurine pathway of tryptophan metabolism in search for neuroprotective agents. Focus on kynurenine-3-hydroxylase. Adv Exp Med Biol. 2003;527:621-628. - PubMed
  190. Röver S, Cesura AM, Huguenin P, Kettler R, Szente A. Synthesis and biochemical evaluation of N-(4-phenylthiazol-2-yl)benzenesulfonamides as high-affinity inhibitors of kynurenine 3-hydroxylase. J Med Chem. 1997;40(26):4378-4385. - PubMed
  191. Carpenedo R, Chiarugi A, Russi P, et al. Inhibitors of kynurenine hydroxylase and kynureninase increase cerebral formation of kynurenate and have sedative and anticonvulsant activities. Neuroscience. 1994;61(2):237-243. - PubMed
  192. Cozzi A, Carpenedo R, Moroni F. Kynurenine hydroxylase inhibitors reduce ischemic brain damage: studies with (m-nitrobenzoyl)-alanine (mNBA) and 3,4-dimethoxy-[-N-4-(nitrophenyl)thiazol-2yl]-benzenesulfonamide (Ro 61-8048) in models of focal or global brain ischemia. J Cereb Blood Flow Metab off J Int Soc Cereb Blood Flow Metab. 1999;19(7):771-777. - PubMed
  193. Amaral M, Levy C, Heyes DJ, et al. Structural basis of kynurenine 3-monooxygenase inhibition. Nature. 2013;496(7445):382-385. - PubMed
  194. Kim HT, Na BK, Chung J, et al. Structural Basis for Inhibitor-Induced Hydrogen Peroxide Production by Kynurenine 3-Monooxygenase. Cell Chem Biol. 2018;25(4):426-438.e4. - PubMed
  195. Campesan S, Green EW, Breda C, et al. The kynurenine pathway modulates neurodegeneration in a Drosophila model of Huntington’s disease. Curr Biol. 2011;21(11):961-966. - PubMed
  196. Beaumont V, Mrzljak L, Dijkman U, et al. The novel KMO inhibitor CHDI-340246 leads to a restoration of electrophysiological alterations in mouse models of Huntington’s disease. Exp Neurol. 2016;282:99-118. - PubMed
  197. Breda C, Sathyasaikumar KV, Idrissi SS, et al. Tryptophan-2,3-dioxygenase (TDO) inhibition ameliorates neurodegeneration by modulation of kynurenine pathway metabolites. Proc Natl Acad Sci USA. 2016;113(19):5435-5440. - PubMed
  198. Turski L, Bressler K, Rettig KJ, Löschmann PA, Wachtel H. Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists. Nature. 1991;349(6308):414-418. - PubMed
  199. Brotchie JM, Mitchell IJ, Sambrook MA, Crossman AR. Alleviation of parkinsonism by antagonism of excitatory amino acid transmission in the medial segment of the globus pallidus in rat and primate. Mov Disord. 1991;6(2):133-138. - PubMed
  200. Butler EG, Bourke DW, Finkelstein DI, Horne MK. The effects of reversible inactivation of the subthalamo-pallidal pathway on the behaviour of naive and hemiparkinsonian monkeys. J Clin Neurosci. 1997;4(2):218-227. - PubMed
  201. Moroni F, Cozzi A, Carpendo R, Cipriani G, Veneroni O, Izzo E. Kynurenine 3-mono-oxygenase inhibitors reduce glutamate concentration in the extracellular spaces of the basal ganglia but not in those of the cortex or hippocampus. Neuropharmacology. 2005;48(6):788-795. - PubMed
  202. Ouattara B, Belkhir S, Morissette M, et al. Implication of NMDA receptors in the antidyskinetic activity of cabergoline, CI-1041, and Ro 61-8048 in MPTP monkeys with levodopa-induced dyskinesias. J Mol Neurosci. 2009;38(2):128-142. - PubMed
  203. Szabó N, Kincses ZT, Toldi J, Vécsei L. Altered tryptophan metabolism in Parkinson’s disease: a possible novel therapeutic approach. J Neurol Sci. 2011;310(1-2):256-260. - PubMed
  204. Silva-Adaya D, Pérez-De La Cruz V, Villeda-Hernández J, et al. Protective effect of L-kynurenine and probenecid on 6-hydroxydopamine-induced striatal toxicity in rats: implications of modulating kynurenate as a protective strategy. Neurotoxicol Teratol. 2011;33(2):303-312. - PubMed
  205. Samadi P, Grégoire L, Rassoulpour A, et al. Effect of kynurenine 3-hydroxylase inhibition on the dyskinetic and antiparkinsonian responses to levodopa in parkinsonian monkeys. Mov Disord. 2005;20(7):792-802. - PubMed
  206. Grégoire L, Rassoulpour A, Guidetti P, et al. Prolonged kynurenine 3-hydroxylase inhibition reduces development of levodopa-induced dyskinesias in parkinsonian monkeys. Behav Brain Res. 2008;186(2):161-167. - PubMed
  207. Luchowska E, Luchowski P, Wielosz M, Turski WA, Urbanska EM. FK506 attenuates 1-methyl-4-phenylpyridinium- and 3-nitropropionic acid-evoked inhibition of kynurenic acid synthesis in rat cortical slices. Acta Neurobiol Exp. 2003;63(2):101-108. - PubMed
  208. Guo X, Dawson VL, Dawson TM. Neuroimmunophilin ligands exert neuroregeneration and neuroprotection in midbrain dopaminergic neurons. Eur J Neurosci. 2001;13(9):1683-1693. - PubMed
  209. Crozier-Reabe KR, Phillips RS, Moran GR. Kynurenine 3-monooxygenase from pseudomonas fluorescens : substrate-like inhibitors both stimulate flavin reduction and stabilize the flavin−peroxo intermediate yet result in the production of hydrogen peroxide. Biochemistry. 2008;47(47):12420-12433. - PubMed
  210. Hokari M, Wu HQ, Schwarcz R, Smith QR. Facilitated brain uptake of 4-chlorokynurenine and conversion to 7-chlorokynurenic acid. NeuroReport. 1996;8(1):15-18. - PubMed
  211. Battaglia G, La Russa M, Bruno V, et al. Systemically administered d-glucose conjugates of 7-chlorokynurenic acid are centrally available and exert anticonvulsant activity in rodents. Brain Res. 2000;860(1):149-156. - PubMed
  212. Zádori D, Nyiri G, Szonyi A, et al. Neuroprotective effects of a novel kynurenic acid analogue in a transgenic mouse model of Huntington’s disease. J Neural Transm. 2011;118(6):865-875. - PubMed
  213. Demeter I, Nagy K, Farkas T, et al. Paradox effects of kynurenines on LTP induction in the Wistar rat. An in vivo study. Neurosci Lett. 2013;553:138-141. - PubMed
  214. Deora GS, Kantham S, Chan S, et al. Multifunctional analogs of kynurenic acid for the treatment of Alzheimer’s disease: synthesis, pharmacology, and molecular modeling studies. ACS Chem Neurosci. 2017;8(12):2667-2675. - PubMed
  215. Li C, Xue L, Liu Y, Yang Z, Chi S, Xie A. Zonisamide for the treatment of parkinson disease: a current update. Front Neurosci. 2020;14:574652. - PubMed
  216. Fukuyama K, Tanahashi S, Hoshikawa M, Shinagawa R, Okada M. Zonisamide regulates basal ganglia transmission via astroglial kynurenine pathway. Neuropharmacology. 2014;76(Pt A):137-145. - PubMed
  217. Van der Perren A, Macchi F, Toelen J, et al. FK506 reduces neuroinflammation and dopaminergic neurodegeneration in an α-synuclein-based rat model for Parkinson’s disease. Neurobiol Aging. 2015;36(3):1559-1568. - PubMed
  218. Skorobogatov K, De Picker L, Verkerk R, et al. Brain versus blood: a systematic review on the concordance between peripheral and central kynurenine pathway measures in psychiatric disorders. Front Immunol. 2021;12: 716980 - PubMed

Publication Types

Grant support